• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New model enables analysis of tissue-engineered cartilage in lab by large animal testing

Bioengineer by Bioengineer
May 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2017, Mary Ann Liebert, Inc., publishers

New Rochelle, NY, May 1, 2017–Researchers have developed a new model to analyze tissue engineered cartilage that allows for the use of a single method to assess functional tissue mechanics in cartilage constructs at all stages of development from the laboratory through large animal testing. This unified approach to soft-tissue modeling, which provides a valuable framework for comparing data across different testing methods and for standardizing mechanical outcomes reporting, is presented in an article in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Tissue Engineering website until June 1, 2017.

Gregory Meloni, Robert Mauck, PhD, and coauthors from the Perelman School of Medicine, University of Pennsylvania, Philadelphia VA Medical Center, University of Pennsylvania (Philadelphia), North Carolina State University (Raleigh), University of North Carolina-Chapel Hill, and AO Foundation (Davos, Switzerland), developed a finite element (FE) model based on the NIH-sponsored freeware FEBio that combines the unconfined compression and indentation testing methods commonly used to evaluate the mechanical properties of tissue engineered cartilage developed to treat osteoarthritis.

In the article entitled "Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue Engineered Cartilage Constructs Across Testing Platforms," the researchers showed that the measurements of changes in material properties during the maturation of engineered cartilage tissue obtained using an FE model significantly correlated with traditional outcomes measures.

"The capacity to accurately measure cartilage tissue properties at all stages of development enables cause and effect relationships to be established more accurately, ultimately supporting successful tissue growth," says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.

###

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed online at the Tissue Engineering website (http://www.liebertpub.com/ten).

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website (http://www.liebertpub.com).

Media Contact

Kathryn Ryan
[email protected]
914-740-2100
@LiebertPub

http://www.liebertpub.com

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025
Link Between Type 2 Diabetes and Heart Failure

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

New Jurassic Bittacidae Species Reveal Wing Spot Diversity

August 23, 2025

Exploring Type 3 APS, T1DM, and LADA Insights

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

New Jurassic Bittacidae Species Reveal Wing Spot Diversity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.