• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Symbiotic bacteria: From hitchhiker to beetle bodyguard

Bioengineer by Bioengineer
April 28, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: photo/©: Paul Gaube and Laura V. Flórez, JGU

An international team of researchers have discovered a remarkable microbe with a Jekyll and Hyde character. The bacterium Burkholderia gladioli lives in specific organs of a plant-feeding beetle and defends the insect's eggs from detrimental fungi by producing antibiotics. However, when transferred to a plant, the bacterium can spread throughout the tissues and negatively affect the plant.

Microbes are not always hostile players when interacting with animals and plants, they can also be powerful allies. In fact, transitions between antagonistic and cooperative lifestyles in microbes are likely not an exception, although such shifts have rarely been observed directly. In a new study published in Nature Communications, researchers from Johannes Gutenberg University Mainz (JGU), the Max Planck Institute for Chemical Ecology and the Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI) – in Jena, and the Universidad Estadual Paulista in Rio Claro, Brazil, gathered evidence for such a transition.

Beetles outsource offspring protection to a bacterium

Like many other insects, a group of herbivorous beetles, the Lagriinae, is in great need of an efficient defense. They lay their eggs on humid soil under leaf litter, where encounters with mold fungi are guaranteed. Researchers lead by Professor Martin Kaltenpoth from Mainz University have now discovered that the presence of a special bacterium, Burkholderia gladioli, on the eggs of the beetle Lagria villosa strongly reduces the risk of fungal infection and helps them survive. "Even when we applied mold fungi to the beetle's eggs, those with their symbiotic microbe present remained clean, whereas those without were often overgrown by a lawn of fungi", said first author Dr. Laura Flórez, who performed the experiments for her PhD project at the Max Planck Institute for Chemical Ecology in Jena, describing one of the key findings. Although some other insects also rely on microbes for protection against natural enemies, a microbial defense of the vulnerable egg stage was unknown.

Newly discovered antibiotic agent resembles a plant defense compound

How is the protection of the nutrient-rich beetle eggs achieved? Chemical analyses revealed four different antibiotics produced by the beetle's microbial bodyguards. While two of these were already known, the other two molecules had not been described before. "We were particularly surprised to find a new chemical that looks much more like a plant defense compound than a bacterial antibiotic", said Professor Christian Hertweck from the Leibniz Institute for Natural Product Research and Infection Biology, who guided the chemical analyses. All four compounds inhibited the growth of other microbes; some were active against fungi, others against bacteria. This chemical armory likely shields the beetle's eggs from a broad spectrum of detrimental microbes.

The insect's friend, the plant's foe

Surprisingly, the beetle's allies are very closely related to plant pathogens. And indeed, when the scientists applied the bacteria to soybean plants, a common food source of L. villosa beetles in nature, the microbes spread throughout the plants. There they had a negative impact as the infection resulted in the production of fewer beans as compared to control plants. But do the bacteria actually have a chance to leave the beetle and infect the plant in nature? An additional experiment demonstrated that they do. After beetles were confined to soybean leaves for three days, the bacteria genetic material could be detected in the leaves. That this is likely relevant in nature is shown by an analysis of five related beetle species: all contained Burkholderia gladioli strains, but these were more closely related to other environmental or plant-associated Burkholderia gladioli strains than to each other. Thus, the bacteria likely hitch a ride on the beetles to jump from plant to plant.

Insect symbiosis as a treasure trove of antibiotics

There are many described cases of insects that carry microorganisms between plants. "What is interesting in the Lagria beetles is that their bacterial hitchhikers have turned into chemically-armed bodyguards", explained Professor Martin Kaltenpoth. In addition, the ability of this bacterium to produce previously unknown bioactive compounds highlights partnerships between insects and microbes as promising sources of novel antibiotics that may help to fight increasingly resistant human pathogens.

###

Media Contact

Dr. Martin Kaltenpoth
[email protected]
49-613-139-24411
@uni_mainz_eng

Startseite der JGU

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.