• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Larger schooling fish found to have stronger attraction forces

Bioengineer by Bioengineer
April 26, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In schooling fish, collective movement emerges as a result of multiple social interactions between individuals. In a new study led by researchers at Uppsala University, larger individuals have been found to display stronger attraction forces to one another than smaller individuals. Short range repulsion forces, on the other hand, are the same regardless of fish size.

In nature, some animals move independently from other individuals of the same species. Others form spectacular swarms, flocks or schools. In an attempt to better understand how interactions and the resulting collective dynamics change with group size and age/size of individuals, the researchers analysed the schooling properties of Pacific blue-eye fish (Pseudomugil signifer) using a combination of traditional biological methods and approaches originating in statistical physics.

The research group identified the strength of fish interactions at different developmental stages. They showed that whilst the short-range repulsion forces had the same strength for different sized fish, attraction strength increased in larger fish.

To validate these results, the researchers designed a computer simulation based on the experimental observations. The simulated organisms were given varying speeds, and local repulsion and alignment rules. The model was found to successfully capture the dynamics of schooling fish.

"Our study shows how application of interdisciplinary statistical approaches, coupled with informed models of collective motion can help extract useful biological information about social interactions in schools of fish. We expect that our findings could also apply to other animal species that exhibit schooling behaviour," says Dr. Maksym Romenskyy at the Department of Mathematics at Uppsala University.

###

Media Contact

Maksym Romenskyy
[email protected]
46-184-713-290
@UU_University

http://www.uu.se

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Ferroptosis in Esophageal Cancer Therapy

August 26, 2025

Impact of Iranian Medicinal Plants on Pancreatic Cancer

August 25, 2025

One-Year Outcomes for Severe Anorexia Nervosa Treatment

August 25, 2025

Assessing China’s Hospital Violence Prevention Policies

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Ferroptosis in Esophageal Cancer Therapy

Impact of Iranian Medicinal Plants on Pancreatic Cancer

One-Year Outcomes for Severe Anorexia Nervosa Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.