• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

From abundant hydrocarbons to rare spin liquids

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kosmas Prassides

Fuel such as petrol is made up of hydrocarbons — a family of molecules consisting entirely of carbon and hydrogen. Pigment and dye, coal and tar are made up of hydrocarbons too.

These common, abundant materials, sometimes even associated with waste, are not often thought of as being electronically or magnetically interesting. But an international research team, led by Professor Kosmas Prassides of Tohoku University in Japan and Professor Matthew J. Rosseinsky of the University of Liverpool in the U.K., has made a significant find.

The team recently discovered how to take such hydrocarbon molecular components, dress them with electrons, each of which carries a small compass — an unpaired spin — and pack them together like cookies in a box to create a quantum spin liquid — a long-sought hypothetical state of matter.

It was in 1973 that the existence of quantum spin liquids was first theoretically proposed. In conventional magnets, the motion of the electron spins – the tiny magnets — freezes on cooling as they align parallel or antiparallel to each other (Fig. 1 left). In contrast, the spins in a quantum spin liquid never stop fluctuating, randomly and strongly, even at the lowest temperature of absolute zero. Each individual spin points simultaneously along an infinite number of directions and is highly entangled with other spins, even those far away (Fig. 1 right). As such, this sea of electron spins is predicted to be host to many exotic phenomena of both fundamental and technological interest.

However, experimental realization of this unique fully-entangled state of matter has remained to date unfulfilled. Despite a four-decade-long search, there are very few quantum spin liquid candidates. Current options include certain copper inorganic minerals and some organic salts, which contain rare, heavy or toxic elements.

In results published in two back-to-back papers on April 24 in the British scientific journal Nature Chemistry, the team came up with the new chemistry needed to make high-purity crystalline materials from the reaction of polyaromatic hydrocarbons (Fig. 2) with alkali metals for the first time.

Materials obtained from polyaromatic hydrocarbons (molecules with many aromatic rings) were proposed in the past as candidates of new superconductors — materials with no electrical resistance and able to carry electricity without losing energy – devoid of toxic or rare elements. However, destruction of the molecular components in the synthetic treatments employed had inhibited any progress in this field.

"Removing the existing synthetic roadblock has led to very exciting developments," says Professor Kosmas Prassides. "We have already discovered that some of the structures of the new materials — made entirely of carbon and hydrogen, the simplest possible combination — show unprecedented magnetic properties — spin liquid behavior (Fig. 3) — with potential applications in superconductivity and quantum computing."

"It took us many years of work to achieve our breakthrough," adds Professor Matthew Rosseinsky. "But in the end, we succeeded in developing not one, but two complementary chemistry routes, which open the way to a rich variety of new materials with as-yet unknown properties."

###

The Tohoku/Liverpool groups worked with teams led by Dr Ryotaro Arita (RIKEN, Japan) and Professor Denis Arcon (University of Ljubljana, Slovenia). The research was supported by the Mitsubishi Foundation, JSPS KAKENHI, JST-ERATO Isobe Degenerate -Integration Project, the European Union and the Engineering and Physical Sciences Research Council (UK). Part of the research was carried out at the synchrotron X-ray facilities at the European Synchrotron Radiation Facility (France) and Diamond Light Source (UK).

Contact:

Kosmas Prassides
WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University
Email: [email protected]
http://www.wpi-aimr.tohoku.ac.jp/prassides_labo/index.html

Matthew Rosseinsky
Department of Chemistry, University of Liverpool
Email: [email protected]
https://www.liverpool.ac.uk/chemistry/staff/matthew-rosseinsky/

DOI: 10.1038/NCHEM.2764
DOI: 10.1038/NCHEM.2765

Media Contact

Kosmas Prassides
[email protected]
@TohokuUniPR

http://www.tohoku.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Kenyan Youth’s Interest in Climate-Smart Dairy Tech

Kenyan Youth’s Interest in Climate-Smart Dairy Tech

August 26, 2025

Assessing the Quality of Bacillus clausii Probiotics in India

August 26, 2025

Exploring Auxins’ Role in Fenugreek Callogenesis

August 26, 2025

Breast Cancer Biomarkers: Key to Diagnosis and Treatment

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kenyan Youth’s Interest in Climate-Smart Dairy Tech

Assessing the Quality of Bacillus clausii Probiotics in India

Exploring Auxins’ Role in Fenugreek Callogenesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.