• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Can virtual reality help us prevent falls in the elderly and others?

Bioengineer by Bioengineer
April 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of the UNC/NC State Department of Biomedical Engineering

CHAPEL HILL, NC – Every year, falls lead to hospitalization or death for hundreds of thousands of elderly Americans. Standard clinical techniques generally cannot diagnose balance impairments before they lead to falls. But researchers from the University of North Carolina at Chapel Hill and North Carolina State University have found evidence that virtual reality (VR) could be a big help – not only for detecting balance impairments early, but perhaps also for reversing those impairments and preventing falls.

In a study published in Nature Scientific Reports, a research team led by Jason R. Franz, PhD, assistant professor in the Joint UNC/NC State department of biomedical engineering, used a novel VR system to create the visual illusion of a loss of balance as study participants walked on a treadmill. By perturbing their sense of balance in this way and recording their movements, Franz's team was able to determine how the participants' muscles responded. In principle, a similar setup could be used in clinical settings to diagnose balance impairments, or even to train people to improve their balance while walking.

"We were able to identify the muscles that orchestrate balance corrections during walking," Franz said. "We also learned how individual muscles are highly coordinated in preserving walking balance. These things provide an important roadmap for detecting balance impairments and the risk of future falls."

Young and healthy adults rely predominantly on the mechanical "sensors" in their feet and legs to give them an accurate sense of body position. So, healthy people usually have no trouble walking in the dark or with their eyes closed. But this sense of proprioception declines in the elderly, as well as in people who have neurodegenerative diseases, such as multiple sclerosis, leading to a much greater reliance on visual cues to maintain balance. In their study, Franz and colleagues chose to use a VR-based method to perturb the visual perception of balance. The subjects walked on a treadmill in front of a large, curved screen depicting a moving hallway.

"As each person walked, we added lateral oscillations to the video imagery, so that the visual environment made them feel as if they were swaying back and forth, or falling," Franz said. "The participants know they aren't really swaying, but their brains and muscles automatically try to correct their balance anyway."

In a setup like those seen in Hollywood motion-capture animation studios, Franz and his team used 14 cameras to record the positions of 30 reflecting markers on the legs, back, and pelvis of each subject. This allowed them to see, in detail, how the specific muscle groups that control postural sway and foot placement worked to correct a perceived loss of balance.

In response to the visual perturbations, the subjects took wider and shorter steps, as expected. And their head and trunk swayed further sideways with each step. The variability of these measures – their tendency to change from one step to the next – increased much more strikingly. Electrodes attached to the skin of the subjects also revealed coordinated electrical activity among the muscles that control postural sway and foot placement, including the gluteus medius, external oblique, and erector spinae.

"These findings give us important insights into the detailed mechanisms of walking balance control," Franz said.

The data also provide key reference measurements that could be used in future clinical procedures to detect balance impairments before they cause people to fall. Franz and his team have ongoing studies in elderly people and plans for studies in people with multiple sclerosis to help develop early-detection procedures. In their earlier work, they have shown that using this VR setting can identify age-related balance deficits that are not otherwise apparent during normal walking.

"We think there's a big opportunity to use visual perturbations in a VR setting to reveal balance impairments that would not be detected in conventional testing or normal walking," Franz said. "The key is to challenge balance during walking, to tease out those impairments that exist under the surface."

Franz and his colleagues also are examining the potential of their VR setup as a physical therapy tool to teach balance-impaired people how to improve their balance and avoid falls. "Early work in our lab suggests it's possible to use these visual perturbations to train a person's balance control system to respond better to imbalance that occurs in daily living," Franz said.

###

The other co-authors of the study were undergraduate research assistant Heather Stokes, who was first author of the Scientific Reports paper, and graduate student Jessica Thompson.

The National Center for Advancing Translational Sciences funded this research.

Media Contact

mark william derewicz
[email protected]
984-974-1915
@UNC_Health_Care

UNC School of Medicine

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.