• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Speed-dependent attraction governs what goes on at the heart of midge swarms

Bioengineer by Bioengineer
April 19, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ever wondered what makes the collective behaviour in insect swarms possible? Andy Reynolds from Rothamsted Research, UK, and colleagues at Stanford University, California, USA, modelled the effect of the attraction force, which resembles Newton's gravity force, acting towards the centre of a midge swarm to give cohesion to their group movement. In a recent study published in EPJ E, their model reveals that the gravity-like attraction towards the heart of the swarm increases with an individual's flight speed. The authors confirmed the existence of such an attractive force with experimental data.

Reynolds and colleagues chose to focus on insect swarms, rather than bird flocks or fish shoals, because interactions between neighbouring individuals appear not to play a key role. This makes insect swarms easier to model. Instead of building a model describing the microscale movement of individuals and confronting it with experimental data, the authors built a model of swarm behaviour that is consistent with experimental observations, in terms of swarm density, of individual midges' speed and acceleration. The model also reflects previous findings that the gravity-like force increases with distance from the centre.

Previous studies pointed to midges interacting primarily via long-range acoustic sensing. Speed-dependent forces are very unusual, but they make biological sense because acoustic and visual interactions between midges–which are the basis of their adaptive movement–are very similar to gravitational interactions.

The new study brings to mind the notion of speed-dependent gravity developed by the XIXth century German physicist Paul Gerber. Einstein dismissed it as "completely useless", but the new study shows that midge swarms effectively behave like self-gravitating systems that are bound together by speed-dependent forces. It seems that cosmologists are not alone in their search for new models of gravity. Such models are now needed much closer to home.

###

Reference: Are midge swarms bound together by an effective velocity-dependent gravity? A. M. Reynolds, M. Sinhuber and N. T. Ouellette (2017), Eur. Phys. J. E 40: 46, DOI 10.1140/epje/i2017-11531-7

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Muscle Health Transitions and Risks in Seniors

December 24, 2025

Exosomes: Aging Insights, Therapeutic Potential, and Challenges

December 24, 2025

miR-155 Inhibits Angiotensin Receptor in Placental Development

December 24, 2025

Long-Term Effects of Cardiovascular Medications in Seniors

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Muscle Health Transitions and Risks in Seniors

Exosomes: Aging Insights, Therapeutic Potential, and Challenges

miR-155 Inhibits Angiotensin Receptor in Placental Development

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.