• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Banned industrial solvent sheds new light on methane mystery

Bioengineer by Bioengineer
April 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Angharad Stell, University of Bristol.

Recent studies have explored a range of possible causes. Suggestions have included a rise in oil and natural gas extraction, increased emissions from tropical wetlands or increases in emissions from growing East Asian economies.

However, a new paper by an international team of scientists in the Proceedings of the National Academy of Sciences (PNAS) investigates an alternative possibility: a rise and fall in the concentration of the substance that destroys methane in the atmosphere, the hydroxyl radical.

Lead author, Dr Matt Rigby from the University of Bristol's School of Chemistry and Cabot Institute, said: "A change in the hydroxyl radical concentration would be a neat explanation for the changes in methane that we've seen.

"It would mean that emissions may not have increased suddenly in 2007, but rather, risen more gradually over the last couple of decades."

Since the global concentration of the hydroxyl radical cannot be measured directly, the team's findings were made by studying the rate at which the solvent methyl chloroform, which is also destroyed by hydroxyl, was removed from the atmosphere.

Professor Ron Prinn from the Massachusetts Institute of Technology, who co-authored the paper and leads the Advanced Global Atmospheric Gases Experiment (AGAGE), an international project that measures greenhouse gas concentrations, said: "We have been monitoring trends in the methyl chloroform for nearly 40 years because of its role in depleting stratospheric ozone.

"Because methyl chloroform is now banned under the Montreal Protocol for the Protection of the Stratospheric Ozone Layer, we've see its concentration drop very rapidly.

"We can examine how this rate of decline changes from one year to the next to infer the hydroxyl radical concentration."

Dr Steve Montzka from the National Oceanic and Atmospheric Administration (NOAA), who also co-authored the paper, and operates an independent measurement network for methylchloroform, added: "This paper re-examines some of the assumptions that had previously been made in studies of hydroxyl radical and methyl chloroform and shows how they influence our understanding of methane's atmospheric sink.

"To me, one of the main findings is that our objective analyses of two sets of observations tells essentially the same story, even as it becomes more and more difficult to measure methyl chloroform given that its concentration is approaching zero."

Dr Rigby added that there was still uncertainty remaining. He explained: "Whilst there are strong hints in our study that hydroxyl radical changes could be playing a significant role in the fluctuations in methane growth, our uncertainties are very large.

"In future, we need to think about new ways to reduce this uncertainty, if we are to truly understand changes in atmospheric methane."

The study also lead to a more certain, but unexpected finding: that emissions of methyl chloroform had not dropped to zero.

Dr Rigby said: "Because its production is now banned globally, we were expecting to see no emissions of this substance at all. However, we have very strong evidence that emissions are continuing."

The team are preparing a follow-up study that would determine where these emissions are originating. Meanwhile, they are continuing to monitor methane in the atmosphere, and are waiting to see whether its current rate of increase will continue.

###

Media Contact

Matt Rigby
[email protected]
07-905-670-549
@BristolUni

http://www.bristol.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking Body and Mind: The Power of Skin Conductance

Tracking Body and Mind: The Power of Skin Conductance

October 12, 2025
High-Frequency Power Amplification with Amorphous Indium Tin Oxide

High-Frequency Power Amplification with Amorphous Indium Tin Oxide

October 12, 2025

Kidney Impairment Increases Healthcare Use in Diabetics

October 12, 2025

Unlocking EEG Connectomes for Neuroscience Breakthroughs

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1221 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Body and Mind: The Power of Skin Conductance

High-Frequency Power Amplification with Amorphous Indium Tin Oxide

Kidney Impairment Increases Healthcare Use in Diabetics

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.