• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanopores could map small changes in DNA that signal big shifts in cancer

Bioengineer by Bioengineer
April 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Aditya Sarathy

CHAMPAIGN, Ill. — Detecting cancer early, just as changes are beginning in DNA, could enhance diagnosis and treatment as well as further our understanding of the disease. A new study by University of Illinois researchers describes a method to detect, count and map tiny additions to DNA called methylations, which can be a warning sign of cancer, with unprecedented resolution.

The method threads DNA strands through a tiny hole, called a nanopore, in an atomically thin sheet of material with an electrical current running through it. The study was published in the inaugural issue of the journal npj 2D Materials and Applications, a new journal from Nature Press.

"One or a few methylations is not a big deal, but if there are many of them and they are packed close together, then it's bad," said study leader Jean-Pierre Leburton, a professor of electrical and computer engineering at Illinois. "DNA methylation is actually a starting process for cancer. So we want to detect how many of them there are and how close together they are. That can tell us at which stage the cancer is."

Other attempts at using nanopores to detect methylation have been limited in resolution. Researchers begin by punching a tiny hole in a flat sheet of material only one atom or molecule thick. The pore is submerged in a salt solution and an electrical current is applied to drive the DNA molecule through the pore. Dips in the current alert researchers that a methyl group is passing through. However, when two or three are close together, the pore interprets it as one signal, Leburton said.

The Illinois group tried a slightly different approach. They applied a current directly to the conductive sheet surrounding the pore. Working with Klaus Schulten, a professor of physics at Illinois, Leburton's group at Illinois' Beckman Institute for Advanced Science and Technology used advanced computer simulations to test applying current to different flat materials, such as graphene and molybdenum disulfide, as methylated DNA was threaded through.

See a video of one simulation on YouTube.

"Our simulations indicate that measuring the current through the membrane instead of just the solution around it is much more precise," Leburton said. "If you have two methylations close together, even only 10 base pairs away, you continue to see two dips and no overlapping. We also can map where they are on the strand, so we can see how many there are and where they are."

Leburton's group is working with collaborators to improve DNA threading, to cut down on noise in the electrical signal and to perform experiments to verify their simulations.

###

Grants from Oxford Nanopore Technology, the Beckman Institute, the National Institutes of Health and the National Science Foundation supported this work.

Editor's notes: To reach Jean-Pierre Leburton, call (217) 333-6813; email: [email protected].

The paper "Detection and mapping of DNA methylation with 2D material nanopores" is available online. doi:10.1038/s41699-017-0005-7

Media Contact

Liz Ahlberg Touchstone
[email protected]
217-244-1073
@NewsAtIllinois

http://www.illinois.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Cell-Based Vaccine Enhances Liver Cancer Therapy, Slowing Disease Progression in Patients

August 26, 2025

Very Low Birth Weight Impacts Japanese Children’s Visual Perception

August 26, 2025

Decoding Network Theory: Understanding Leadership and Followership Dynamics

August 26, 2025

Updated ATA Management Guidelines for Adult Differentiated Thyroid Cancer Unveiled

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cell-Based Vaccine Enhances Liver Cancer Therapy, Slowing Disease Progression in Patients

Very Low Birth Weight Impacts Japanese Children’s Visual Perception

Decoding Network Theory: Understanding Leadership and Followership Dynamics

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.