• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study identifies a role for the metabolism regulator PPARγ in liver cancer

Bioengineer by Bioengineer
April 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Liver cancers are a major cause of cancer-related deaths. Large-scale genetic analyses have associated liver cancer with dysregulation of numerous molecular pathways, but disruptions in insulin signaling pathways appear to have a particularly important contribution to liver tumor formation. Obesity is a major risk factor for developing liver cancer, and the nuclear receptor PPARγ critically controls fat uptake and storage in the liver by regulating the transcription of metabolism-associated genes. However, whether PPARγ also plays a role in promoting the growth of liver tumors is not clear.

This week in the JCI, research led by Ganna Panasyuk at INSERM examined the link between PPARγ and liver tumor formation. The findings identify a metabolic pathway with pro-tumor effects that can be suppressed by selectively blocking PPARγ. Researchers initially observed that increases in PPARγ expression and activity in human liver tumors were associated with loss-of-function of the transcription factor hepatocyte nuclear factor 1α (HNF1α). In a mouse model, they determined that loss of HNF1α led to abnormal increases in PPARγ expression that in turn led to increased tumorigenesis. Pharmacological activation of PPARγ in a mouse model of liver cancer exacerbated tumor formation; in contrast, treatment with a PPARγ inhibitor had positive therapeutic effects.

Taken together, these findings demonstrate a role for PPARγ in the metabolic pathway disturbances that promote liver tumorigenesis and reveal that PPARγ is a potential target for anti-tumor therapies to treat liver cancers.

###

TITLE: Hepatocyte nuclear factor 1α suppresses steatosis- associated liver cancer by inhibiting PPARγ transcription

AUTHOR CONTACT:

Ganna Panasyuk
Institut Necker-Enfants Malades
INSERM U1151/CNRS UMR 8253 a href="mailto:[email protected]">[email protected]

View this article at: http://www.jci.org/articles/view/90327?key=f53576a87fd0165f5cb7

Media Contact

Elyse Dankoski
[email protected]
@jclinicalinvest

http://www.jci.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.