• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Putting a spin on logic gates

Bioengineer by Bioengineer
April 10, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Fischer/Kewenig/Meyer

WASHINGTON, D.C., April 10, 2017 — Computer electronics are shrinking to small-enough sizes that the very electrical currents underlying their functions can no longer be used for logic computations in the ways of their larger-scale ancestors. A traditional semiconductor-based logic gate called a majority gate, for instance, outputs current to match either the "0" or "1" state that comprise at least two of its three input currents (or equivalently, three voltages). But how do you build a logic gate for devices too small for classical physics?

One recent experimental demonstration, the results of which are published this week in Applied Physics Letters, from AIP Publishing, uses the interference of spin-waves — synchronous waves of electron spin alignment observed in magnetic systems. The spin-wave majority gate prototype, made of Yttrium-Iron-Garnet, comes out of a new collaborative research center funded by the German Research Foundation, named Spin+X. The work has also been supported by the European Union within the project InSpin and has been conducted in collaboration with the Belgian nanotechnology research institute IMEC.

"The motto of the research center Spin+X is 'spin in its collective environment,' so it basically aims at investigating any type of interaction of spins — with light and matter and electrons and so on," said Tobias Fischer, a doctoral student at the University of Kaiserslautern in Germany, and lead author of the paper. "More or less the main picture we are aiming at is to employ spin-waves in information processing. Spin waves are the fundamental excitations of magnetic materials."

So instead of using classical electric currents or voltages to send input information to a logic gate, the Kaiserslautern-based international team uses vibrations in a magnetic material's collective spin — essentially creating nanoscale waves of magnetization that can then interfere to produce Boolean calculations.

"You have atomic magnetic moments in your magnetic material which interact with each other and due to this interaction, there are wave-like excitations that can propagate in magnetic materials," Fischer said. "The particular device we were investigating is based on the interference of these waves. If you use wave excitations instead of currents […] then you can make use of wave interference, and that comes with certain advantages."

Using wave interference to produce the majority gate's output provides two parameters to use in controlling information: the wave's amplitude, and phase. In principle, that makes this concept more efficient also since a majority gate can substitute up to 10 transistors in modern electronic devices.

"The device we were investigating consists of three inputs where we excite waves and they combine," Fischer said. "Depending on the input phases where you encode the information, that determines the phase of the output signal, hence, defining the logic output state '0' or '1'. That is actually information processing and that's what we want."

This first device prototype, though physically larger than what Fischer and his colleagues see for eventual large-scale use, clearly demonstrates the applicability of spin-wave phenomena for reliable information processing at GHz frequencies.

Because the wavelengths of these spin waves are easily reduced to the nanoscale, so too (though perhaps not quite as easily) can be the gate device itself. Doing so may actually improve the functionality, reducing its sensitivity to unwanted field fluctuations. Besides, nano-scaling will increase spin-wave velocities that will allow for an increase in computing speed.

"What we aim for is the miniaturization of the device, and the smaller you make the device, the less sensitive it becomes to these influences," Fischer said. "If you look at how many wavelengths fit into this propagation length, the fewer there are, the less influence a change of the wavelength has on the output. So basically downscaling the device would also come with more benefits."

Furthermore, much like antennae, a single device can be operated at multiple frequencies simultaneously. This will allow for parallel computing using the same "core" of a future spin-wave processor.

"One of my colleagues in Kaiserslautern is into spin-wave multiplexing and de-multiplexing," Fischer said. "We are also going in that direction, to use multiple frequencies and that would be a good compliment […] to this majority gate."

###

The article, "Experimental prototype of a spin-wave majority gate," is authored by T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands and A. V. Chumak. The article will appear in Applied Physics Letters on April 10, 2017 (DOI: 10.1063/1.4979840) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4979840.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@jasonbardi

http://www.aip.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Neonatal Risks Linked to In-Utero Growth Restriction

August 26, 2025
JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

August 26, 2025

Targeted Prostate Screening: Reducing Harm through Age Stratification

August 26, 2025

Aortic Valve Guides Umbilical Artery Catheter Placement

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    146 shares
    Share 58 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neonatal Risks Linked to In-Utero Growth Restriction

JUNO Successfully Completes Liquid Filling and Commences Data Acquisition

Targeted Prostate Screening: Reducing Harm through Age Stratification

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.