• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

For horseshoe bats, wiggling ears and nose makes biosonar more informative

Bioengineer by Bioengineer
April 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Logan Wallace/Virginia Tech

Humans, and most other mammals, have just four muscles joining their ears to their head. Bats have more than 20, and they use them to execute a precise series of wiggles, swivels, and twitches.

"In one-tenth of a second, three times as fast as you can blink your eyes, the bats can change the shape of their ears," said Rolf Mueller, an associate professor of mechanical engineering at Virginia Tech.

Mueller is the lead author of a new study, published in Physical Review Letters, demonstrating that these quick, precise movements underlie the bats' ability to wend their way through their world.

Bat echolocation is one of nature's remarkable achievements in navigation.

These nimble, nocturnal mammals emit ultrasonic pulses from their mouths or noses, depending on the species; the waves bounce off objects in the environment and are picked up again by the bats' ears. The reflected waves encode data about the bats' surroundings, helping them navigate and hunt in dark, crowded, hazardous environments.

Researchers don't yet completely understand how this biosonar system achieves its extraordinary accuracy. The bat gets just two incoming signals, one in each ear, and must construct a three-dimensional map detailed enough to allow them to zip through dense forests and routinely perform improbable sensory tasks — distinguishing a moth's wingbeat from the flutter of a leaf, for example.

One piece of the puzzle is the intricate structure of the bats' ears, which helps shape incoming pulses. For nose-emitting species like the horseshoe bats Mueller studies, similarly ornate structures called noseleaves act like megaphones to amplify and shape outgoing signals.

Now, Mueller has found that movements of the ears and noseleaves help, too, by packing extra information into every ultrasonic pulse the bats receive.

Over the last several years, his group has demonstrated that these rapid movements alter the ultrasound waves leaving the nose and the echoes entering the ears.

The new study is the first to demonstrate that these changes enrich the signals' information content. In particular, Mueller and his colleagues showed that the ability of the ears and noseleaves to adopt different conformations increases the bats' ability to localize the source of incoming signals.

To test whether the motion of horseshoe bat ears and noseleaves improves their biosonar performance, the team generated two models for each structure: a computational model and 3-D printed replica of the noseleaf and a computational model and simplified physical replica of the ear.

Each of the four models was tested in five different configurations, simulating the shape changes during biosonar emission and reception.

The researchers found that each of the five configurations provided a substantial amount of unique acoustic information. The farther apart two configurations were, the greater the difference in the signals, suggesting that these shape changes play a meaningful role in supplying more detailed data.

To investigate whether this additional information might be useful for echolocation, the researchers analyzed whether combining data from all five configurations improved a sensor's ability to localize the source of a sound wave.

It did: combining five different configurations versus averaging five signals from the same configuration increased the maximum number of directions the sensor could distinguish by a factor of 100 to 1000, depending on the noise level.

The enhanced performance was consistent across all four models.

"What I found amazing was that the effect was very robust, even with the simplified models," Mueller said. "You don't need to reproduce all of the details of the real bat to see the effect of the motion."

That suggests that bolstering sensor capability by using a dynamic, mobile emitter and receiver should be translatable to engineered systems less complex than real bats, improving the navigation of autonomous drones and the accuracy of devices for speech recognition.

Directional resolution is likely just one function of the ears' and noseleaves' rapid motion, and the bats need more than just the direction of incoming signals to navigate through thickets and hunt in crowded swarms.

To investigate other aspects of biosonar performance, Mueller and his team are refining and updating their models and incorporating new bat species into their studies.

"There's always a next version," he said.

###

Media Contact

Eleanor Nelsen
[email protected]
540-231-2761
@VTresearch

http://www.vtnews.vt.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Xiang Pigs Show Genetic Links to Wrinkled Skin

Xiang Pigs Show Genetic Links to Wrinkled Skin

November 13, 2025
Phylogenetic Insights: Studying Annona Species’ Growth and Form

Phylogenetic Insights: Studying Annona Species’ Growth and Form

November 13, 2025

SIRT4’s Impact on Obesity: Mechanisms and Medicine

November 13, 2025

Enhancing Cardiac Targeting in AAV Gene Therapy

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Xiang Pigs Show Genetic Links to Wrinkled Skin

Phylogenetic Insights: Studying Annona Species’ Growth and Form

SIRT4’s Impact on Obesity: Mechanisms and Medicine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.