• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How nanoparticles affect flow through porous stuff in surprising ways

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dastvareh and Jalel Azaiez

WASHINGTON, D.C., April 4, 2017 — Those who have mixed oil and vinegar may have unknowingly observed a strange fluid phenomenon called fingering instability. A type of this phenomenon, called viscous fingering (VF), occurs in porous media where fluids of differing viscosity converge in finger-shaped patterns as a result of growing disturbances at the interface.

Such instabilities are encountered in a wide variety of fields. For applications like the oil recovery process, or contaminant transport in soil, where a fluid is injected to displace oil or contaminants, a uniform fluid front is required to achieve the highest volumetric sweep and effectiveness, making such instabilities undesirable.

On the other hand, in microfluidic devices such as micromixers where inertial effects are negligible, VF is an effective means of enhancing the mixing rate of the fluids. Understanding different aspects of this phenomenon, and the variables that can control things like instabilities and velocity distribution dynamics, can potentially offer options to control and utilize these effects more effectively.

A team of researchers at the University of Calgary has been working on this area for a long time and recently made great strides in understanding the phenomenon. They report their findings this week in the journal Physics of Fluids, from AIP Publishing.

"My work is part of the puzzle in the evolution in this research area," said Benham Dastvareh, a researcher at the University of Calgary. "My research allows me to combine my interest in mathematics, numerical methods and fundamental research in transport phenomena, and particularly fluid mechanics."

Employing a comprehensive approach, the Calgary researchers incorporated the nonlinear simulation of the growing fingers and also analytical stability analysis of nanofluid displacement in a porous media. By combining the advantages of these methods, they achieved better and more comprehensive understanding of the phenomenon.

Results revealed that nanoparticles cannot make an otherwise stable flow unstable, but they can enhance or attenuate the instability of an originally unstable flow. Increasing either the nanoparticles' deposition rate or their rate of diffusion destabilized the flow. Furthermore, nanoparticle deposition can change an initial monotonically decreasing viscosity distribution — one that is purely decreasing or unchanging, to a non-monotonic one, and results in the development of vortex dipoles.

"Analyses of vortex structures along with the viscosity distributions allowed us to explain the observed trends and the resulting finger configurations, Dastvareh said. "This work opens a gate for further studies and represents new findings that can be used to control the growing instabilities in the presence of nanofluids for different applications."

This work may also have potential applications for drug delivery, where nanoparticles can't penetrate easily through a porous medium. "It is possible that viscous fingering could be used to open a channel in the human tissue to transfer these nanoparticles for clinical treatment," Dastvareh said.

###

The article, "Instabilities of nanofluid flow displacements in porous media," is authored by Behnam Dastvareh and Jalel Azaiez. The article will appear in the journal Physics of Fluids April 4, 2017 (DOI: 10.1063/1.4978890). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4978890.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@jasonbardi

http://www.aip.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.