• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tiny plankton wields biological ‘gatling gun’ in microbial Wild West

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Urban Tillmann.

Researchers have obtained an unprecedented view of the 'ballistic' weaponry of planktonic microbes, including one that can fire projectiles as if wielding a Gatling gun.

"We think of plankton as the tiny alphabet soup of the ocean, floating around passively while larger organisms eat it," says biologist Gregory Gavelis, who lead the study while a researcher at the University of British Columbia (UBC).

"But some planktonic microbes, like dinoflagellates, are predators and have developed incredible defensive and prey capture mechanisms."

Until now, how dinoflagellates acquired and fired these projectiles, called extrusomes, was unclear.

Gavelis and colleagues studied two types of dinoflagellates: Polykrikos kofoidii and Nematodinium sp. They were able to capture the first 3D views of the microbes' interior and determined Polykrikos launch a harpoon-like structure to snag their prey, then tow it in. Nematodinium, on the other hand, discharge the contents within a ring of capsules, like a Gatling gun.

"Nematodinium has the most sophisticated extrusomes we've seen so far," says UBC zoologist Brian Leander, senior author on the paper published in Science Advances.

The researchers also found new evidence for the evolutionary origins of these extrusomes.

They analyzed the DNA of the dinoflagellates to determine if their ballistic mechanism was similar to the stinging organelles (nematocysts) of cnidarians, such as the jellyfish. They concluded that's not the case.

"This is a very exciting example of convergent evolution over a vast distance across the tree of life," Leander explains. "The stinging nematocysts of cnidarians closely resemble those of dinoflagellates, but the ballistic mechanisms are different and they don't appear to share any genes."

Further research would look at more species of dinoflagellates with extrusomes, attempting to obtain a better understanding of their diversity and evolutionary history.

"People hadn't been able to figure out how these dinoflagellates attack their prey because their ballistic mechanisms are so unexpectedly complex," says Gavelis, now at Arizona State University Tempe. "The ballistic organelles look like some kind of alien device."

###

EDITORS: High-resolution images available, video available.

Flickr gallery: https://www.flickr.com/photos/ubcscience/albums/72157681888734006

YouTube: https://youtu.be/uXsiVaAioNk

Media Contact

Silvia Moreno-Garcia, Communications
[email protected]
604-827-5001
@UBCnews

http://www.ubc.ca

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

August 25, 2025
Evaluating My Dose Coachâ„¢ for Insulin Management in Diabetes

Evaluating My Dose Coach™ for Insulin Management in Diabetes

August 25, 2025

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

August 25, 2025

Urtica dioica Boosts Cisplatin-Induced Apoptosis in Ovarian Cancer

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

Evaluating My Dose Coach™ for Insulin Management in Diabetes

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.