• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanoparticle treatment could improve immunotherapy against cancer

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have discovered a potential novel strategy for improving drugs that unleash the immune system against cancer — by binding two compounds to a nanoparticle.

"Our data shows that two compounds on a single nanoparticle will make immunotherapy treatments even more effective," said the study's senior author Andrew Wang, MD, a UNC Lineberger member and associate professor in the UNC School of Medicine Department of Radiation Oncology.

In preliminary findings that will be presented Sunday, April 2, at the American Association for Cancer Research Annual Meeting 2017, researchers report on a preclinical study into the use of nanoparticles to improve the efficacy of immunotherapy drugs known as checkpoint inhibitors. They are using the nanoparticles to pair immunotherapy treatments with a type of investigational compound known as a T-cell agonist.

T-cells, which are a type of immune cell, do not naturally attack cancer cells because they don't recognize cancer cells as invaders. T-cells have "checkpoints" that act like a traffic red light to ensure they don't attack things inside the body that should be left alone. A checkpoint inhibitor removes the red light so T-cells can attack cancer cells, but this might not be enough to help the immune system win the battle against cancer. To improve the T-cell response to cancer, researchers are drawing upon a potential treatment under investigation called a T-cell agonist, which is designed to increase T-cell activation, and enable immune cells to kill cancer cells more effectively.

"Some agents help T-cells with proliferation and survival, while others overcome the T-cells' self-regulation and inhibition," said the study's first author Yu Mi, PhD, a postdoctoral research associate in the UNC School of Medicine Department of Radiation Oncology. "Nanoparticles provide us with a tool to co-deliver different agents to T-cells so they will be activated by both of the agents at the same time."

Wang's group used a nanoparticle to combine a "red light" checkpoint inhibitor with a "green light" T-cell agonist that energizes the T-cells. This green light is an investigational OX40 agonist.

"The inhibitor takes away the red lights, but for T-cells to go, you also need green lights," Wang said.

To deliver them both at the same time, Wang's group attached them to a nanoparticle.

With the combined investigational nanoparticle treatment, the researchers reported improved stimulation of T-cells and better survival rates in preclinical models.

"We found that the therapeutic effect of nanoparticles is far better than the mixture of free agents," Mi said.

###

In addition to Mi and Wang, other authors include Christof Smith, Feifei Yang, Johnathan Serody, and Benjamin Vincent.

The study was supported by the National Cancer Institute.

Media Contact

Laura Oleniacz
[email protected]
919-812-0621

http://cancer.med.unc.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

August 25, 2025
blank

Pollinators Use Sight and Smell for Flower Identification

August 25, 2025

Developing Diverse Hairy Root Collections: Methodology Unveiled

August 25, 2025

Nurses’ Views on Online Learning: Effects on Performance

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    134 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

Pollinators Use Sight and Smell for Flower Identification

Developing Diverse Hairy Root Collections: Methodology Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.