• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Towards a mathematical theory of PID control

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The well-known and nearly hundred years old "proportional-integral- derivative"(PID) controller is a linear feedback control method which adjusts the input signal by using the regulation error of the systems only. Because of its simple structure, good robustness and high reliability, it is by far the most widely used control method in automatic control. For example, it has been reported that 95% control loops are of PID type in process control. However, one of the most challenging tasks for the implementation of the PID controller is how to design the three parameters of the controller. Although tremendous research efforts have been made on this problem by scientists and engineers, this crucial problem has never been well solved theoretically, in particular, a rigorous theory is lacking in the design and analysis of PID control for nonlinear uncertain systems. In the history, one of the most eminent methods for designing the PID parameters is the Ziegler-Nichols rule, which is a method based on some features of the linear process dynamics extracted from experiments conducted by either the step response method or the frequency response method. Many other methods including tuning and adaptation for the design of the PID parameters have also been proposed and investigated but mostly for linear systems.

Without doubt, almost all of the practical control systems are inherently nonlinear and time varying with uncertainties. Therefore, how to design the three PID parameters? Does the closed-loop control system have guaranteed good performance? What is the capability of the classical PID control? This research provides a preliminary answer to these basic and important scientific questions.

This new research work is authored by Cheng Zhao and Lei Guo, published in Science China Information Sciences in the second issue of 2017, under the title "PID controller design for second order nonlinear uncertain systems".

This research begins with physical systems modeled by the Newton's second law, proves that for a class of second order nonlinear uncertain systems, if the upper bounds of the partial derivatives of the nonlinear uncertain function are available, one can select the three PID parameters to globally stabilize the closed-loop systems and at the same time to make the position of the controlled system converge to any given setpoint. Actually, the authors have shown that the selection of the PID parameters has considerable flexibility, since they can be chosen from an unbounded three-dimensional manifold. Moreover, some necessary and sufficient conditions for the selection of the parameters are also established in some special cases.

In practical applications, the celebrated Newton's second law in mechanics still plays a fundamental role in modeling dynamical systems of the physical world. Thus, this research not only makes the first important step in establishing a theoretical basis for PID control, but also provides valuable guidelines for control engineers.

Despite of the remarkable progresses of the modern control theory over the past half a century, the classical PID control not only has exhibited its powerful vitality, but also has demonstrated as a most useful method for controller design of uncertain dynamical systems. It goes without saying that, this will be a high valuable paper from both theoretical and practical standpoints.

###

This research was funded by National Natural Science Foundation of China (Grant No. 1688101).

See the article:

Zhao C, Guo L. PID controller design for second order nonlinear uncertain systems. Sci China Inf Sci, 2017, 60(2):022201,doi: 10.1007/s11432-016-0879-3
http://engine.scichina.com/publisher/scp/journal/SCIS/60/2/10.1007/s11432-016-0879-3?slug=full%20text

Media Contact

Guo Lei
[email protected]

http://zh.scichina.com/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

August 25, 2025
blank

Pollinators Use Sight and Smell for Flower Identification

August 25, 2025

Developing Diverse Hairy Root Collections: Methodology Unveiled

August 25, 2025

Nurses’ Views on Online Learning: Effects on Performance

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    134 shares
    Share 54 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-Fire Growth Insights of Cyathea Mexiae in Brazil

Pollinators Use Sight and Smell for Flower Identification

Developing Diverse Hairy Root Collections: Methodology Unveiled

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.