• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Legos and origami inspire next-generation materials

Bioengineer by Bioengineer
March 29, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credit: Nan Yang, Jesse L. Silverberg.

Inspired by the fun of playing with Legos, an international team of researchers from Tianjin University of Technology and Harvard University have used the idea of assembling building-blocks to make the promise of next-generation materials a practical reality.

Publishing online in the journal Proceedings of the National Academy of Sciences Mar, 20, Nan Yang from the Laboratory for the Design and Intelligent Control of Advanced Mechatronical Systems and Jesse Silverberg from the Wyss Institute for Biologically Inspired Engineering removed a key bottleneck slowing down the translation of scientific progress to commercial applications.

Silverberg described it like this: "Metamaterials are driving a revolution in material science. The current approach of building every-day stuff turns out to be limited because the materials we work with have a relatively narrow range of properties and capabilities."

Metamaterials go beyond what's found in nature by assembling simple elements into repeating patterns. At large scales, these smaller components influence the larger construction in unusual ways. Yang noted "The variety of applications is growing. Today we see mechanical metamaterials used to shape the flow of vibrational waves like earthquakes to protect buildings. Tomorrow, who knows what will be next."

The researchers, however, were concerned that these discoveries haven't been moving from the lab to the market fast enough. A challenge they noted was the time and difficulty of designing for real-world applications.

A few years ago, origami – the art of paper-folding – was recognized for its ability to rapidly convert flat sheets into 3D patterns with unusual metamaterial properties. "While easy to fold, the time required to find good designs for practical problems is often too costly," said Silverberg. "Suppose you wanted a mechanical metamaterial to absorb impact during a car crash. What's the best design for that? And even if you find a good folding pattern, does it even fit with the car's chassis?"

Both Yang and Silverberg have young children. They described their 'ah-ha' moment like this: "We were working late one night over Skype and we realized the solution was literally on the floor in front of us. What if we could build metamaterials like our kids build with Legos?"

This insight led the researchers to design a standard set of building-blocks. "We started designing a basic unit, kind of like the classic 2-by-4 Lego brick, but instead of making them in different colors, we gave them different mechanical properties. A stiff one, a soft one, etc," said Silverberg. Once designed, the team was able to create larger and more elaborate structures the same way their children were creating multi-colored ships and robots.

As examples, the researchers showed how to assemble two different types of mechanical `cloaking materials.' They also gave examples of how a pre-determined set of properties can be engineered into arbitrary 3D structures, a highly elusive challenge since the beginning of metamaterial research.

Yang went on, "Now that have a basic strategy, we're working out the design for even more 'bricks' and methods to rapidly assemble them." Silverberg added, "Looking ahead, we foresee tools that allow anyone with a computer to easily design complex metamaterials."

###

Yang's contribution to the research, "Decoupling local mechanics from large-scale structure in modular metamaterials" was supported by Tianjin Natural Science Foundation and the National Natural Science Foundation of China. Silverberg was independently funded.

Media contact (China): Nan Yang
E-mail: [email protected]
Media contact (USA): Jesse L. Silverberg
E-mail: [email protected]

Media Contact

Nan Yang
[email protected]

http://www.tjut.edu.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.