• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

About time! Predicting midge seasonality key to reducing livestock diseases

Bioengineer by Bioengineer
March 28, 2017
in Science News
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Stefanie Schafer

Ecologists at the UK-based Centre for Ecology & Hydrology (CEH) have led a study which informs optimal strategies for control of devastating midge-borne diseases like bluetongue and Schmallenberg virus that affect cattle and sheep in the UK and beyond.

Adult female midges (males do not bite) are responsible for infecting farm animals with numerous diseases and are active and abundant between Spring and Autumn. This activity period varies across the UK and Europe, and the severity of disease is linked to how many midges occur at peak season.

Essential movements of animals between premises and vaccination campaigns can only occur in the European Union within the Seasonal Free Vector Period over winter, when adult midges are absent or less active and don't bite animals and pass on infection.

Models offer the opportunity to understand the interaction of biology and climate in producing seasonal patterns of adult midges and to tune control measures to their activity.

Dr Steven White and Dr Bethan Purse led a team of scientists to devise a scientific model that explains the appearance, disappearance and peak numbers of adult midges in the UK on the basis of temperature effects on their survival and development.

Working in collaboration with scientists at The Pirbright Institute in Surrey, England, and Rothamsted Research, Harpenden, England, the model integrated lab data linking temperature to demography and was tested out on year-round, daily captures of midges from Rothamsted's UK suction trap network.

Because this model incorporates the biology underlying the seasonal patterns, it could then be used to simulate the impact of applying insecticides to adult midge populations at different times of year.

The results suggest that the timings of insecticide treatments could be crucial in midge and disease control. Concentrating treatments over the Spring midge peak could inadvertently increase the midge abundance later in the year due to a 'density-dependence release effect' (adult removal leads to a decrease in over-compensatory larval competition, increases larval survival and subsequent adult abundance).

Conversely, the model predicts that timing insecticide treatments over the Autumn midge peak has the greatest effect on population suppression.

The last outbreak of Bluetongue in England, Scotland or Wales was in 2007 but SAC Consulting in March 2017 confirmed that the Schmallenberg virus, which can cause stillbirths or birth defects in livestock, was found in lambs in two Scottish flocks near the border with England.

Birth defects only happen if infected adult midges bite ewes and transmit Schmallenberg virus during a critical window of pregnancy, close to the end of the adult midge season (in Scotland). This model could help us to understand how such critical events in the livestock and midge life cycles coincide to cause disease under different sets of conditions like cooler and warmer years.

Dr Steven White, a Theoretical Ecologist at the Centre for Ecology & Hydrology, said, "This new model sheds light on why we observe specific patterns of abundance for these important group of biting insects. Our results highlight that thinking about the timing of midge activity and insecticide release is very important for midge and disease control."

"Understanding how biology and climate interact to govern adult midge seasons is critical to strategies for combating midge-borne diseases. Being able to predict when and where the midges are actively biting livestock is invaluable for calculating the vector-free period in which livestock can be safely vaccinated and moved between premises", said Dr Bethan Purse, a Disease Ecologist at the Centre for Ecology & Hydrology.

Dr White added, "What was really interesting was that we found that the mechanism that midges employ to survive the winter in the UK, known as diapause, is very important in defining the following peaks of abundance. Most studies only consider the months where midges are active, since the peak abundances are closely linked to the severity of disease. However, our study suggests that non-active periods are also key."

The scientists, who presented their findings in the journal Parasites & Vectors, say that more extensive modelling of Culicoides biting midges in different countries will help create better ways to control them with insecticides as well as predict instances of potential disease outbreaks.

Co-author Dr Christopher Sanders, an entomologist at The Pirbright Institute, said, "Our research provides much needed data on the influence of over-wintering success of vectors on disease risk and the potential impact of mitigation strategies for combating Culicoides-borne diseases."

Co-author Chris Shortall, an entomologist at Rothamsted Research, said, "This study shows the value of long-term national monitoring networks for building robust models of how insect vectors respond to climate and in turn providing useful guidance for control strategies against livestock diseases."

###

The study was funded by the European Union (EU), Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC).

Notes to editors

Contact details

For interview requests and images contact Wayne Coles, Media Relations Officer, Centre for Ecology & Hydrology, UK, Mobile: +44 (0)7920 2955384, Email: [email protected]

Lead author, Dr Steven White, Theoretical Ecologist, Centre for Ecology & Hydrology, UK, Office: +44 (0)1491 692699 Email: [email protected]

Co-author, Dr Bethan Purse, Disease Ecologist, Centre for Ecology & Hydrology, UK, Office: +44 (0)1491 692429 Email: [email protected]

Co-author, Dr Christopher Sanders, an Entomologist, Pirbright Institute, UK, Office: +44 (0)1483 231206 Email: [email protected]

Co-author, Mr Chris Shortall, Entomologist, Rothamsted Research, UK, Office: 01582938466 Email: [email protected]

Paper reference

Steven M. White, Christopher J. Sanders, Christopher R. Shortall, Bethan V. Purse, 'Mechanistic Model for Predicting the Seasonal Abundance of Culicoides Biting Midges and the Impacts of Insecticide Control,' Parasites & Vectors, published online 27 March 2017. Doi: 10.1186/s13071-017-2097-5

The paper is available as an open access document via this URL: http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-017-2097-5

The Centre for Ecology & Hydrology (CEH) http://www.ceh.ac.uk is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of the Natural Environment Research Council, employs more than 450 people at four major sites in England, Scotland and Wales, hosts over 150 PhD students, and has an overall budget of about £35m. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment. You can follow the latest developments in CEH research via @CEHScienceNews on Twitter

Media Contact

Wayne Coles
[email protected]
44-014-916-92650
@CEHScienceNews

http://www.ceh.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025
blank

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025

Predicting Extrahepatic Recurrence After Liver Cancer Surgery

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

Ancient Skull Sheds Light on Plotopteridae Origins

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.