• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nitrogen foraging ability of plants relies on mobile shoot-root hormone signal

Bioengineer by Bioengineer
March 27, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Yoshikatsu Matsubayashi

Nagoya, Japan – Although not able to actively forage for their food, plants can nevertheless overcome problems relating to nutrient scarcity or varied distribution using a long-distance signaling mechanism. This helps determine their competitive success and productivity. For instance, nitrogen (usually in the form of nitrate) is essential for plant growth, but is often only present as patches in the soil. Nitrogen-starved roots express a mobile plant hormone (CEP) that travels upward to the shoot and eventually triggers compensatory nitrogen uptake by roots in more nitrogen-rich areas. This CEP signal is received by a receptor protein in the leaves, but the molecules involved in the shoot-to-root response signal were unknown.

Nagoya University research has now revealed that phloem-specific polypeptides (chains of amino acids) are activated in response to the CEP signal, and switch on the expression of a nitrate transporter gene only when nitrate is present in the soil immediately surrounding the root. The study was reported in Nature Plants.

To identify the gene(s) switched on when the CEP receptor is activated, researchers screened genetic candidates that were highly upregulated following treatment of the model plant Arabidopsis with CEP.

Two genes matching this description and also regulated by the nitrogen status of the roots were discovered to encode polypeptides that the team named CEPD1 and CEPD2 for CEP downstream 1 and 2, respectively.

The team showed that these polypeptides accumulated in the roots, although the genes encoding them were expressed only in the shoots. This indicated that the polypeptides act as mobile descending shoot-to-root signals.

Plants were then grown with their roots separated into two parts, each receiving different levels of nitrogen, to explore the roles of CEPD1 and CEPD2. "Roots exposed to nitrogen-rich medium showed increased expression of a nitrate transporter gene," co-first author Yuri Ohkubo says. "However, mutant plants in which CEPD1 and CEPD2 genes were switched off showed no such activation of the nitrate transporter."

CEPD polypeptides were detected at similar quantities in both nitrogen-rich and nitrogen-starved roots. However, they only switched on the nitrate transporter gene on the nitrogen-rich side of the plant. "The plant response to a lack of nitrogen therefore depends on the availability of nitrate in the soil surrounding its roots," corresponding author Yoshikatsu Matsubayashi says. "The extent of this nitrate availability ultimately determines if CEPD activates the nitrate transporter gene."

Such a sophisticated signaling system ensures that plants maximize the efficiency at which they obtain nutrients, and could be exploited to improve fertilizer application and enhance plant productivity.

###

The article "Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition" was published in Nature Plants at DOI: 10.1038/nplants.2017.29

Media Contact

Koomi Sung
[email protected]

http://www.nagoya-u.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Key Genes Linked to Lung Adenocarcinoma’s Vasculogenic Mimicry

November 8, 2025

Herbal Extracts Block Alpha-Synuclein Fibril Formation

November 8, 2025

ACINUS: Key Player in Plant Cell Death

November 8, 2025

Single-Cell Insights into Bat Viral Infections Uncovered

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Key Genes Linked to Lung Adenocarcinoma’s Vasculogenic Mimicry

Herbal Extracts Block Alpha-Synuclein Fibril Formation

ACINUS: Key Player in Plant Cell Death

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.