• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Microwave-induced bismuth salts-mediated synthesis of molecules of medicinal interests

Bioengineer by Bioengineer
March 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bismuth salts are used as medicinally active ingredients for the past many years due to their minimum toxicity and side effects. It is important to note that lead and antimony salts are much more toxic than bismuth salts. Reactions with less toxic reagents and catalysts are actively pursuing by many researchers following green protocols and environmentally friendly methods. Researchers around the globe are developing and maintaining chemical reactions environmentally safe and sustainable. Many procedures that utilize toxic materials are not acceptable for business development. Despite these improvements, a few hazardous processes are continuing because of lack of other green methods and as a result, the cost to manufacture useful compounds remains very high.

Bismuth salts-mediated reactions were reported by us 19 years ago. The preparation of organic compounds with bismuth salts was not routinely performed at that time and therefore, it was difficult to convince scientists that these salts may prove to be efficient catalysts or reagents in organic and medicinal chemistry. Nevertheless, we realized that numerous organic molecules and their immediate precursors can be synthesized using bismuth salts-mediated processes. Our continued efforts have culminated in the development of many new methods as well as the improvement of existing methods. Since then, the application of bismuth salts in the synthesis of organic compounds is increasing because of a number of factors. Bismuth salts possess excellent catalytic power and they can produce compounds following two distinct mechanistic routes. For example, they are able to generate mineral acids in the reaction systems and they are also good substrates for effective coordination with electronegative atoms and functional groups. Bismuth is heavier and bigger in atomic radius in comparison to group I and II metals. Due to these facts, the attraction of bismuth to numerous anions is much less. This property is further strengthened because of the presence of vacant d-orbitals in bismuth (III) salts. This vacant orbital is used by electronegative atoms of other reagents through their coordination activities and facilitates simultaneous nucleophilic reactions to occur.

The principal aim of this article is to describe the development of bismuth salts-induced reactions for the synthesis of useful organic compounds that we are pursuing for the past 19 years. Our endeavors in this area are proved to be attractive and these also uncover bismuth nitrate pentahydrate as an extremely active catalyst. During the course of this investigation, it is anticipated that microwave irradiation method coupled with bismuth salts are the choice for many effective chemical transformations. Since the discovery of microwave-induced chemistry, this method has received highly significant application in many areas. It is known that microwaves are non-ionizing radiations and because of dielectric heating exerted by microwave, successful reactions are performed within a few minutes instead of several hours. Many scientists believe microwave exposures alter conformation and configuration of reactant molecules instantly and activate polar solvents very quickly. Therefore, non polar solvents with low dipole moment are not suitable in microwave-induced chemistry. Polar solvents are able to activate non-polar reactants provided sufficient microwave energy is applied to the reaction vessels. Our group has reported numerous methods for the preparation of organic molecules effectively using polar solvents and in the absence of any solvents. It has been found that bismuth salts are highly compatible to microwave irradiation and they are efficient promoters for the synthesis of milligram to several hundred grams of compounds. For this reasons, bismuth salts-mediated reactions under microwave-induced methods remains one of the attractive strategies that we have been developing for many years.

Numerous articles have demonstrated the superiority of microwave-induced method over conventional heating in accelerating the rate of diverse reactions. In contrast, a few scientists argue that microwaves are only heating instruments and according to them radiation has no effects on chemical reactions. Our studies on microwave-induced bismuth salts-catalyzed reactions have become significant in the synthesis of organic compounds. The products obtained by this method are very important. Some of the products are also transformed to medicinally active compounds by chemical manipulations. For example, we have demonstrated synthesis of hormones, anticancer drug candidates, antibacterials and compounds for rare diseases. Notably, a number of expeditious methods are developed following this procedure. On the basis of our findings, this review is written to inform professionals working in academic institutions and industries.

###

Debasish Bandyopadhyay,1* Ashlee Chavez1and Bimal K. Banik 2*

1Department of Chemistry, The University of Texas-Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539, USA

2Community Health Systems of South Texas, 3135 Sugar Road, Edinburg Texas 78539, USA

*Corresponding authors; Phone: +1(956)5789414, Fax: +1(956)3845006, E-mail: [email protected] (DB) and Phone: +1(281)8132104, Fax: +1(956)2798085, Email: [email protected] (BKB) and [email protected] (BKB)

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

No Heritability Found in Extra-Pair Mating Behavior

September 16, 2025
blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

No Heritability Found in Extra-Pair Mating Behavior

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

Pueraria lobata and Puerarin Boost Dopamine Activity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.