• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Novel virus breaks barriers between incompatible fungi

Bioengineer by Bioengineer
March 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wu S, et al. (2017)

Scientists have identified a virus that can weaken the ability of a fungus to avoid pairing with other incompatible fungi, according to new research published in PLOS Pathogens. By promoting fungal pairing, the virus could aid transmission of additional unrelated viruses between fungi.

Fungi, like all other organisms, can recognize foreign substances; such non-self recognition can help protect against pathogens. Some fungi also use non-self recognition to avoid pairing and sharing genetic material with incompatible strains. The fungus Sclerotinia sclerotiorum, which infects hundreds of plant species worldwide, employs this strategy, which is known as vegetative incompatibility.

While studying S. sclerotiorum, Jiatao Xie of Huazhong Agricultural University, China, and colleagues discovered a virus they named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4). To better understand this novel virus, they grew infected S. sclerotiorum alongside other vegetatively incompatible strains and investigated the molecular effects.

The researchers found that SsMYRV4 decreased expression of S. sclerotiorum genes that promote vegetative incompatibility. Vegetative incompatibility is a molecular process that normally causes cell death when two incompatible strains touch each other; in this study, Xie's team found a reduction in the amount of cell death that normally occurs in intermingled colonies of incompatible strains.

S. sclerotiorum infected with SsMYRV4 successfully made connections with incompatible strains by fusing filamentous structures known as hyphae. To investigate the consequences, the scientists grew SsMYRV4-infected fungi alongside fungi infected with other unrelated viruses. They found that the unrelated viruses were able to pass through the fused hyphae, crossing between fungal pairs.

Vegetative incompatibility is considered a significant obstacle to using viruses to effectively control fungal diseases. These new findings could point to a new strategy that uses SsMYRV4 to weaken barriers between fungi. They could also improve understanding of virus ecology and evolution.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.doi.org/10.1371/journal.ppat.1006234

Citation: Wu S, Cheng J, Fu Y, Chen T, Jiang D, Ghabrial SA, et al. (2017) Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathog 13(3): e1006234. doi:10.1371/journal.ppat.1006234

Funding: This study was supported by the National Nature Science Foundation of China 31371982 (to JX), the China National Funds for Distinguished Young Scientists 31125023 (to DJ), the Special Fund for Agro-scientific Research in the Public Interest 201103016 (to DJ), the Key Project of the Chinese Ministry of Education 313024 (to DJ), the China Agriculture Research System CARS-13 (to DJ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

PLOS Pathogens
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

September 15, 2025
blank

Quantum Sensors Built to Withstand Extreme Pressures

September 15, 2025

Vanderbilt and Fritz Haber Institute Unveil Breakthrough in Nanoscale Light Confinement, Paving the Way for Terahertz Optics and Optoelectronic Innovation

September 15, 2025

Survey Reveals Voting Trends Among Disabled Healthcare Workers

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GLP-1 Drugs Demonstrated as Cost-Effective Treatment for Knee Osteoarthritis and Obesity

Quantum Sensors Built to Withstand Extreme Pressures

Vanderbilt and Fritz Haber Institute Unveil Breakthrough in Nanoscale Light Confinement, Paving the Way for Terahertz Optics and Optoelectronic Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.