• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers create self-sustaining bacteria-fueled power cell

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Binghamton University

BINGHAMTON, NY – Instead of oil, coal, or even solar energy, self-sustaining bacterial fuel cells may power the future.

Researchers at Binghamton University, State University of New York have developed the next step in microbial fuel cells (MFCs) with the first micro-scale self-sustaining cell, which generated power for 13 straight days through symbiotic interactions of two types of bacteria.

"This concept of creating electricity through synergistic cooperation is not new. However, much of this work is still in its nascent stages," said Binghamton University Electrical and Computer Science Assistant Professor Seokheun Choi, who is one of the co-authors of "Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria," along with PhD candidate Lin Liu.

"The evolution of this technology will require additional exploration, but we, for the first time, realized this conceptual idea in a micro-scale device," Choi said.

In a cell chamber about one-fifth the size of a teaspoon–90 microliters–researchers placed a mixed culture of phototrophic and heterotrophic bacteria. Phototrophic bacteria uses sunlight, carbon dioxide, and water to make its own energy, while heterotrophic bacteria must "feed" on provided organic matter or phototrophic bacteria to survive – think of cows grazing in a grassy field.

While the cell was exposed to sunlight, an initial dose of "food" was added to the chamber to stimulate growth of the heterotrophic bacteria. Through cellular respiration, the heterotrophic bacteria produced carbon dioxide waste, which was used by the phototrophic bacteria to kickstart the symbiotic cycle.

After that cycle was established, researchers stopped adding additional "food" sources for the heterophic bacteria, and there was enough phototrophic bacteria to sustain the metabolic processes of the heterophic bacteria. Those metabolic processes generated an electrical current–8 microamps per square centimeter of cell–for 13 straight days. The power was about 70 times greater than current produced by phototrophic bacteria alone.

"Heterotrophic bacteria-based fuel cells generate higher power, while photosynthetic microbial fuel cells provide self-sustainability. This is the best of both worlds, thus far," Choi said.

The breakthrough is promising, but it is an early step in the development of bacteria-generated power. Overall, the miniature size of the cells allows for a short start-up time and small electrical resistances to overcome. However, a common 42" high-definition television takes about half an amp of electrical current to function which would, theoretically, require roughly 62,500 cells from the experiment. In reality, these cells will be used to provide power in remote or dangerous locations for low-power items like health monitors and infrastructure diagnostic sensors.

"There are some challenges of using this technique," Choi said. "Balancing both microorganisms' growth to maximize the device performance and the need to make sure that this closed system will permanently generate power without additional maintenance are two we have found. Long-term experiments are needed."

The current work is the latest in a series of battery-related and microbial-based power studies Choi has worked on. Last spring, researchers connected nine biological-solar (bio-solar) cells into a working bio-solar panel for the first time ever. The bacteria used in that experiment were phototrophic. That panel generated the most wattage of any existing small-scale bio-solar cells: 5.59 microwatts. Choi has also developed an origami-inspired microbe-based paper battery, a microbe-based battery that can use human saliva as a power source, a battery that can be printed on paper and battery designs inspired by Japanese ninja throwing stars.

###

The paper will appear in the Journal of Power Sources on April 30.

Media Contact

Seokheun Choi
[email protected]
607-777-5913
@binghamtonu

http://www.binghamton.edu

############

Story Source: Materials provided by Scienmag

Share15Tweet8Share2ShareShareShare2

Related Posts

blank

Tumour-Targeted STING Agonist Created with Prodrugs

September 16, 2025
Targeting the Centromedian Nucleus: A Promising Approach for Addressing Drug-Resistant Epilepsy in Brain Network Disorders

Targeting the Centromedian Nucleus: A Promising Approach for Addressing Drug-Resistant Epilepsy in Brain Network Disorders

September 16, 2025

New Insights into Bitter Taste Receptors Revealed Through AlphaFold3 Structural Analysis

September 16, 2025

Leveraging Hemp Waste for Sustainable 3D Biocomposites

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tumour-Targeted STING Agonist Created with Prodrugs

Targeting the Centromedian Nucleus: A Promising Approach for Addressing Drug-Resistant Epilepsy in Brain Network Disorders

New Insights into Bitter Taste Receptors Revealed Through AlphaFold3 Structural Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.