• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

ATP hydrolysis energy explained through large-scale hybrid quantum/classical simulations

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Hideaki Takahashi

In ATP hydrolysis, water is used to split apart adenosine triphosphate (ATP) to create adenosine diphosphate (ADP) to get energy. ATP hydrolysis energy (AHE) is then used in the activities of living cells.

Many attempts have been made to explain the molecular origin of AHE. In the 1960s, AHE was thought to be solely contained in the molecular structure of ATP, and quantum-chemical calculations were conducted without any quantitative success.

In the late 1990s, more investigations into AHE were conducted using quantum mechanical calculations in water that was treated as a continuum dielectric medium. However, the role of the water solvent as a structured assembly of small molecules in the energetics of AHE has remained unclear.

Now researchers in Japan have, for the first time, succeeded in unveiling the microscopic mechanism of AHE release in water, using the state-of-the-art computational approach.

In the study led by Hideaki Takahashi at Tohoku University, the effects of the molecular properties of the solvent, as well as the electronic states of the solutes, were fully considered. Such large-scale simulations were made possible by hybrid quantum and classical computational techniques implemented on massively parallel computers. This refers to the use of a large number of processors simultaneously performing a set of coordinated computations.

Furthermore, the simulation was followed by free energy calculations using a high-accuracy-high-speed method developed by Nobuyuki Matubayasi at Osaka University.

With this study, the research team explained why the hydrolysis free energies of ATP and pyrophosphate are mostly -10 kcal/mol and are insensitive to the total charges of these solutes. They also discovered that the constancy of AHE is a result of the superb compensation between the electronic-state stabilization and the destabilization in hydration free energy of the solutes.

This is significant because it constitutes a new fundamental issue to be described in standard biology textbooks.

###

The researchers' collaborative work was made possible by the Grant-in-Aid for Scientific Research on Innovative Areas "Hydration and ATP Energy" directed by Tohoku University's Makoto Suzuki.

Media Contact

Makoto Suzuki
[email protected]
@TohokuUniPR

http://www.tohoku.ac.jp/en/

############

Story Source: Materials provided by Scienmag

Share97Tweet8Share2ShareShareShare2

Related Posts

Integrating Movement in Eating Disorder Recovery

September 15, 2025
blank

New Theory Proposes Culture as a Key Driver of Major Human Evolutionary Shift

September 15, 2025

Enhancing Biomedical Engineering Curriculum with Studio-Based Learning

September 15, 2025

Research Indicates Majority of Americans Could Improve Health by Abolishing Daylight Saving Time

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Movement in Eating Disorder Recovery

New Theory Proposes Culture as a Key Driver of Major Human Evolutionary Shift

Enhancing Biomedical Engineering Curriculum with Studio-Based Learning

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.