• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

TU Graz researchers show that enzyme function inhibits battery ageing

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Lunghammer – TU Graz

It has been known in biology for a long time that the excited oxygen molecule singlet oxygen is the main cause of ageing in cells. To counter this, nature uses an enzyme called superoxide dismutase to eliminate superoxide as a free radical. Superoxide also occurs in cell respiration for energy production and is the preliminary stage and thus source of singlet oxygen. TU Graz's Stefan Freunberger has now stumbled upon astonishing parallels of oxygen chemistry in battery systems.

He investigates ageing processes in non-aqueous batteries, such as oxygen batteries – in other words, battery systems in which oxygen reacts with lithium, sodium magnesium, for example, thus releasing energy. The energy density of these next-generation batteries is considerably higher than in today's lithium-ion batteries, but their fast ageing still makes them currently unusable. "I've realised for a long time that superoxide cannot be the single cause of ageing, as previously assumed. Singlet oxygen is quite well known because it's so reactive. But nobody had checked to see if it occurs in batteries. Not least because there weren't any methods to detect it there," describes Freunberger. In the current issue of Nature Energy, Freunberger describes the detection methods which have been developed and shows that singlet oxygen really is mainly responsible for ageing in non-aqueous oxygen batteries.

Enzyme function for batteries

"From the point of view of research, this is a gold mine. It shows that in all electrochemical activities in which oxygen is involved – and this is usually the case in battery chemistry – singlet oxygen can be of importance. The methods used to detect singlet oxygen can also be applied in other areas," says Stefan Freunberger. On top of the problem recognition and methodology development, the article in Nature Energy also provides an initial approach to how the storage cell can protect itself from the reactive oxygen species. "In essence, the battery needs the function of the enzyme superoxide dismutase. We were able to identify a class of molecules which can fulfil this function. There has to be a suitable way of getting the "enzyme" into the battery system – either through the electrolyte itself or by means of an additive which dissolves in the electrolyte. This is an initial approach that works but it is definitely not the optimum way. Behind this big door which we pushed open, there is a lot of work to do," says Freunberger.

###

Singlet Oxygen Generation as a Major Cause for Parasitic Reactions during Cycling of Aprotic Lithium-Oxygen Batteries. Nature Energy. DOI: 10.1038/nenergy.2017.36.

The work was produced with the help of colleagues from several institutes of TU Graz, acib competence centre, Université Montpellier, the University of Southampton and the French research network RS2E.

This project is anchored in the Field of Expertise "Advanced Materials Science", one of five research foci of TU Graz.

Contact:

Stefan FREUNBERGER
Dipl.-Ing. Dr.sc.ETH
Institute for Chemistry and Technology of Materials
Phone +43 316 873 32284
Mobile: +43 680 2040 594
Email: [email protected]

Media Contact

Stefan Freunberger
[email protected]
43-680-204-0594

http://www.tugraz.at

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Student Engagement in Cross-Disciplinary Medical Research

August 29, 2025

CGM Impact: Diabetes and Sleep Apnoea Explained

August 29, 2025

Engineered Hydrogels Mimic Embryonic Stem Cell Environment

August 29, 2025

Prognostic Gene Discovery in Acute Myeloid Leukemia

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Student Engagement in Cross-Disciplinary Medical Research

CGM Impact: Diabetes and Sleep Apnoea Explained

Engineered Hydrogels Mimic Embryonic Stem Cell Environment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.