• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research proposes new theories about nature of Earth’s iron

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NASA/JPL-Caltech

New research challenges the prevailing theory that the unique nature of Earth's iron was the result of how its core was formed billions of years ago.

The study opens the door to competing theories about why levels of certain heavy forms of iron, known as isotopes, are higher on Earth than in other bodies in the solar system. The prevailing view attributes the Earth's anomalous iron composition to the formation of the planet's core. But the study published Feb. 20 in Nature Communications suggests that the peculiar iron's isotopic signature developed later in Earth's history, possibly created by a collision between Earth and another planetary body that vaporized the lighter iron isotopes, or the churning of Earth's mantle, drawing a disproportionate amount of heavy iron isotopes to Earth's crust from its mantle.

Iron is one of the most abundant elements in the solar system, and understanding it is key to figuring out how Earth and other celestial bodies formed. The researchers compared the ratio of the heavier iron isotope Fe-56 to the lighter Fe-54 for Earth and extraterrestrial rocks, including those from the moon, Mars and ancient meteorites. They found that the ratio is significantly higher for Earth rocks than for extraterrestrial rocks, all of which have an identical ratio. Their research attempts to explain how that happened.

"The Earth's core formation was probably the biggest event affecting the Earth's history," said Jung-Fu Lin, professor of geosciences at the University of Texas at Austin and co-author of the paper. "In this study we say that there must be other origins than the Earth's formation for this iron isotopic anomaly."

Co-author Nicolas Dauphas, the Louis Block Professor of Geophysical Sciences at the University of Chicago, called the research groundbreaking "because of the synthesis of the materials analyzed, the technique to take the measurements and the data treatment."

The authors recreated the high pressure that characterized the conditions on Earth during the formation of its core. To do this, the researchers used a diamond anvil cell–a device capable of recreating pressures that exist deep inside planets–and were able to synthesize processes that would not be discernible otherwise.

"The diamond anvil cell has been used in this way before, but the difficulty is getting correct numbers," Dauphas said. "That requires great care in data acquisition and treatment because the signal the diamond anvil gives off is very small. One has to use sophisticated mathematical techniques to make sense of the measurements, and it took a dream team to pull this off."

The experiment sought to show that the high levels of heavy iron isotopes in Earth's mantle likely occurred during the formation of Earth's core. But the measurements show that it does not work, "so the solution to this mystery must be sought elsewhere," Dauphas said.

More research is needed to understand the core's formation and the reasons for Earth's unique iron isotopic signature.

###

The team included researchers from the University of Chicago, Argonne National Laboratory, Sorbonne University in France, Museum National d'Histoire Naturelle in France, the Center for High Pressure Science and Technology Advanced Research in China and the University of Illinois at Urbana-Champaign.

Citation: "Iron isotopic fractionation between silicate mantle and metallic core at high pressure," in Nature Communications, Feb. 20, 2017, by Jin Liu, Nicolas Dauphas, Mathieu Roskosz, Michael Y. Hu, Hong Yang, Wenli Bi, Jiyong Zhao, Esen E. Alp, Justin Y. Hu and Jung-Fu Lin. DOI: 10.1038/ncomms14377

Media Contact

Greg Borzo
[email protected]
773-702-8366
@UChicago

http://www-news.uchicago.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025

Predictive Models Shape Transplant Eligibility Decisions

August 29, 2025

Enhanced Visualization of Microcystic Macular Edema in OCT

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

Predictive Models Shape Transplant Eligibility Decisions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.