• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The discovery of Majorana fermion

Bioengineer by Bioengineer
March 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©Science China Press

The detection of Majorana fermion is one of the hotspots in the study of condensed matter recently. The research group in Shanghai Jiao Tong University (SJTU) achieved great breakthrough in the detection of Majorana fermion in the artificial topological superconductor, which is the heterostructure of a normal superconductor and a topological insulator. Majorana fermion was successfully detected in this system.

A review article on the research of Majorana fermion in the artificial topological superconductor was recently published in Science China Physics, Mechanics & Astronomy (SCPMA), 60, 057401, 2017. In this article, a series of significant experimental results from Prof. Jin-Feng Jia's group in SJTU, and their co-workers were discussed.

Majorana fermion is an exotic particle, whose anti-particle is exactly the same with itself. In condensed matter, Majorana fermion exists as a quasi-particle excitation in topological superconductors. It obeys non-Abelian statistics and thus can be used in fault-tolerant topological quantum computation, which greatly enhances the application ability of quantum computer.

No topological superconductor in nature has been confirmed yet. Physicists however built a heterostructure of superconductor and topological insulator. In the heterostructure, the topological surface states acquire the superconductivity from the superconducting substrate via proximity effect and become topological superconductor. Applied magnetic field, Majorana fermion will existed in the excited vortex core on the surface of the heterostructure.

There exist two major difficulties in the research of Majorana fermion in artificial topological superconductor. One is to find proper materials for the heterostructure. The other is to detect the Majorana fermion. In 2012, the group in SJTU successfully grown epitaxial topological insulator Bi2Se3 films on top of superconductor NbSe2 which built a milestone of in this research. In the following years, they built the heterostructure Bi2Te3/NbSe2 and detected Majorana fermions in such system via STM.

Majorana fermion is an electronic state that lies at zero energy. In the vortex core, there exist other low energy states that are unrepeatable under current STM energy resolution. This is the major hinder in the detection of Majorana fermion. However, researchers found that the spatial distribution of Majorana fermion is significantly different from other excitation states in the vortex core. By carefully analysis the spatial distribution of the excitation states in the vortex core of the heterostructure, they found solid evidences of the existence of Majorana fermion for the first time. Moreover, Majorana fermion has exotic spin properties that give spin-selective Andreev reflection process. Via a spin-polarized STM, this process was also detected in the heterostructure, which became not only another evidence of Majorana fermion's existence but also a potential method to control Majorana fermion in this system. Once Majorana fermion can be controlled, the topological quantum computation will be more realistic.

###

See the article: Hao-Hua Sun and Jin-Feng Jia, Majorana zero mode in the vortex of an artificial topological superconductor, Science China-Physics Mechanics Astronomy, 60, 057401, 2017.

http://engine.scichina.com/publisher/scp/journal/SCPMA/60/5/10.1007/s11433-017-9011-7?slug=full%20text http://link.springer.com/article/10.1007/s11433-017-9011-7

Media Contact

Jin-Feng Jia
[email protected]

http://zh.scichina.com/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Children’s Psychosocial Recovery Post-ICU Hospitalization Studied

September 18, 2025

CRISPR Boosts SCN2A to Treat Neurodevelopmental Disorders

September 18, 2025

Assessing Spanish Interpretation Access in Primary Care

September 18, 2025

Analog Speech Recognition via Physical Computing

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Psychosocial Recovery Post-ICU Hospitalization Studied

CRISPR Boosts SCN2A to Treat Neurodevelopmental Disorders

Assessing Spanish Interpretation Access in Primary Care

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.