• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The recipe for especially efficient stomata

Bioengineer by Bioengineer
March 16, 2017
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Michael Raissig and Dominique Bergmann

Scientists have identified a key element underlying the superior function of stomata – or tiny, gas-exchanging pores – in grasses, where stomata function more efficiently than they do in other plant types. The results reveal a mechanism that may have contributed to the successful diversification of the grass family millions of years ago. During photosynthesis, plants maximize the amount of carbon they intake from carbon dioxide, while minimizing the amount of water they lose, by adjusting their stomata. Grasses – the plant lineage that provides the majority of human food, fiber and biofuel – have evolved a unique stomata structure that allows them to do this function particularly well. Here, studying Brachypodium distachyon, a grass species related to major cereal grains like wheat, Michael Raissig et al. used a genetic screen to identify elements responsible for the unique morphology of grass stomata. They uncovered a transcription factor, or protein, known as MUTE. The version of MUTE found in Brachypodium was bigger than the related protein in the flowering plant Arabidopsis; it was also mobile, traveling to cells adjacent to where it was synthesized. Brachypodium engineered to lack the mobilized MUTE did not exhibit the characteristic stomata, and grew poorly, the researchers report. These findings may be harnessed by plant breeders and agricultural biotechnologists to enhance both photosynthetic capacity and water use efficiency in major grass and even other crops.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Prenatal Counseling of Trisomy 18 Heart Defects

September 18, 2025
DeepSeek-R1 Boosts LLM Reasoning via RL

DeepSeek-R1 Boosts LLM Reasoning via RL

September 18, 2025

New Study Reveals “Healthy Competition” Among Menu Options Encourages Patients to Choose Greener, Lower-Fat Hospital Foods

September 18, 2025

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prenatal Counseling of Trisomy 18 Heart Defects

DeepSeek-R1 Boosts LLM Reasoning via RL

New Study Reveals “Healthy Competition” Among Menu Options Encourages Patients to Choose Greener, Lower-Fat Hospital Foods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.