• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Relativistic electrons uncovered with NASA’s Van Allen probes

Bioengineer by Bioengineer
March 15, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: NASA's Goddard Space Flight Center/Tom Bridgman

Earth's radiation belts, two doughnut-shaped regions of charged particles encircling our planet, were discovered more than 50 years ago, but their behavior is still not completely understood. Now, new observations from NASA's Van Allen Probes mission show that the fastest, most energetic electrons in the inner radiation belt are not present as much of the time as previously thought. The results are presented in a paper in the Journal of Geophysical Research and show that there typically isn't as much radiation in the inner belt as previously assumed — good news for spacecraft flying in the region.

Past space missions have not been able to distinguish electrons from high-energy protons in the inner radiation belt. But by using a special instrument, the Magnetic Electron and Ion Spectrometer — MagEIS — on the Van Allen Probes, the scientists could look at the particles separately for the first time. What they found was surprising –there are usually none of these super-fast electrons, known as relativistic electrons, in the inner belt, contrary to what scientists expected.

"We've known for a long time that there are these really energetic protons in there, which can contaminate the measurements, but we've never had a good way to remove them from the measurements until now," said Seth Claudepierre, lead author and Van Allen Probes scientist at the Aerospace Corporation in El Segundo, California.

Of the two radiation belts, scientists have long understood the outer belt to be the rowdy one. During intense geomagnetic storms, when charged particles from the sun hurtle across the solar system, the outer radiation belt pulsates dramatically, growing and shrinking in response to the pressure of the solar particles and magnetic field. Meanwhile, the inner belt maintains a steady position above Earth's surface. The new results, however, show the composition of the inner belt isn't as constant as scientists had assumed.

Ordinarily, the inner belt is composed of high-energy protons and low-energy electrons. However, after a very strong geomagnetic storm in June 2015, relativistic electrons were pushed deep into the inner belt.

The findings were visible because of the way MagEIS was designed. The instrument creates its own internal magnetic field, which allows it to sort particles based on their charge and energy. By separating the electrons from the protons, the scientists could understand which particles were contributing to the population of particles in the inner belt.

"When we carefully process the data and remove the contamination, we can see things that we've never been able to see before," said Claudepierre. "These results are totally changing the way we think about the radiation belt at these energies."

Given the rarity of the storms, which can inject relativistic electrons into the inner belt, the scientists now understand there to typically be lower levels of radiation there — a result that has implications for spacecraft flying in the region. Knowing exactly how much radiation is present may enable scientists and engineers to design lighter and cheaper satellites tailored to withstand the less intense radiation levels they'll encounter.

In addition to providing a new outlook on spacecraft design, the findings open a new realm for scientists to study next.

"This opens up the possibility of doing science that previously was not possible," said Shri Kanekal, Van Allen Probes deputy mission scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, not involved with the study. "For example, we can now investigate under what circumstances these electrons penetrate the inner region and see if more intense geomagnetic storms give electrons that are more intense or more energetic."

###

The Van Allen Probes is the second mission in NASA's Living with a Star Program and one of many NASA heliophysics missions studying our near-Earth environment. The spacecraft plunge through the radiation belts five to six times a day on a highly elliptical orbit, in order to understand the physical processes that add and remove electrons from the region.

Media Contact

Mara Johnson-Groh
[email protected]
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.