• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sonic cyber attack shows security holes in ubiquitous sensors

Bioengineer by Bioengineer
March 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ANN ARBOR — Sound waves could be used to hack into critical sensors in a broad array of technologies including smartphones, automobiles, medical devices and the Internet of Things, University of Michigan research shows.

The new work calls into question the longstanding computer science tenet that software can automatically trust hardware sensors, which feed autonomous systems with fundamental data they need to make decisions.

The inertial sensors involved in this research are known as capacitive MEMS accelerometers. They measure the rate of change in an object's speed in three dimensions.

It turns out they can be tricked. Led by Kevin Fu, U-M associate professor of computer science and engineering, the team used precisely tuned acoustic tones to deceive 15 different models of accelerometers into registering movement that never occurred. The approach served as a backdoor into the devices–enabling the researchers to control other aspects of the system.

"The fundamental physics of the hardware allowed us to trick sensors into delivering a false reality to the microprocessor," Fu said. "Our findings upend widely held assumptions about the security of the underlying hardware.

"If you look through the lens of computer science, you won't see this security problem. If you look through the lens of materials science, you won't see this security problem. Only when looking through both lenses at the same time can one see these vulnerabilities."

The researchers performed several proof-of-concept demonstrations: They used a $5 speaker to inject thousands of fictitious steps into a Fitbit. They played a malicious music file from a smartphone's own speaker to control the phone's accelerometer trusted by an Android app to pilot a toy remote control car. They used a different malicious music file to cause a Samsung Galaxy S5's accelerometer to spell out the word "WALNUT" in a graph of its readings.

All accelerometers have an analog core–a mass suspended on springs. When the object the accelerometer is embedded in changes speed or direction, the mass moves accordingly. The digital components in the accelerometer process the signal and ferry it to other circuits.

"Analog is the new digital when it comes to cybersecurity," Fu said. "Thousands of everyday devices already contain tiny MEMS accelerometers. Tomorrow's devices will aggressively rely on sensors to make automated decisions with kinetic consequences."

Autonomous systems like package delivery drones and self-driving cars, for example, base their decisions on what their sensors tell them, said Timothy Trippel, a doctoral student in computer science and engineering and first author of a new paper on the findings.

"Humans have sensors, like eyes, ears and a nose. We trust our senses and we use them to make decisions," Trippel said. "If autonomous systems can't trust their senses, then the security and reliability of those systems will fail."

The trick Trippel and Fu introduced exploits the same phenomenon behind the legend of the opera singer breaking a wine glass. Key to that process is hitting the right note–the glass' resonant frequency.

The researchers identified the resonant frequencies of 20 different accelerometers from five different manufacturers. Then instead of shattering the chips, they tricked them into decoding sounds as false sensor readings that they then delivered to the microprocessor.

Trippel noticed additional vulnerabilities in these systems as the analog signal was digitally processed. Digital "low pass filters" that screen out the highest frequencies, as well as amplifiers, haven't been designed with security in mind, he said. In some cases, they inadvertently cleaned up the sound signal in a way that made it easier for the team to control the system.

The researchers recommend ways to adjust hardware design to eliminate the problems. They also developed two low-cost software defenses that could minimize the vulnerabilities, and they've alerted manufacturers to these issues.

The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

###

The researchers will present a paper on the work April 26 in Paris at the IEEE European Symposium on Security and Privacy. The paper is titled "WALNUT: Waging Doubt on the Integrity of MEMS Accelerometers with Acoustic Injection Attacks." The research was supported by the National Science Foundation.

Media Contact

Nicole Casal Moore
[email protected]
734-647-7087
@umich

http://www.umich.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Obesity’s Impact on Female Mobility and Musculoskeletal Health

September 19, 2025

Calcifying Fibrous Tumor: Uncommon Cause of Intestinal Obstruction

September 19, 2025

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025

Evaluating Farmer-Managed Irrigation in Nepal’s Dhading District

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Obesity’s Impact on Female Mobility and Musculoskeletal Health

Calcifying Fibrous Tumor: Uncommon Cause of Intestinal Obstruction

Broad-Range Phages Thrive Across Diverse Ecosystems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.