• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New model explains the formation of supermassive black holes in the very early universe

Bioengineer by Bioengineer
March 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credit: J. Wise (Georgia Tech) & J. Regan (Dublin City).

Observations in the past decade have demonstrated that extremely massive supermassive black holes were already in place when the Universe was less than 800 million years old. Supermassive black holes found at the centres of galaxies typically have masses of millions up to even billions of solar masses, whereas the black holes formed in the collapse of massive stars have masses around 5-20 solar masses.

– The observations of extremely massive black holes in the very early Universe are somewhat surprising, since it is not straightforward to grow the mass of black hole from tens up to billions of solar masses in the limited time available, says Associate Professor Peter Johansson from University of Helsinki, who has developed a new simulation model to describe in more detail the formation of supermassive black holes in the early Universe.

A black hole grows most effectively through the accretion of gas, but when the gas hurls towards the black hole it heats up strongly due to friction forces and the strong gravitational field. The resulting hot gas radiates strongly and some fraction of the radiation couples with the infalling gas exerting strong radiation pressure, preventing further gas infall.

Thus black holes cannot be force-fed, as too much accretion results in a strong burst of radiation that pushes back the infalling gas.

When very large gas clouds collapse directly to seed supermassive black holes

During the last years an alternative model for the formation of supermassive black holes in the early Universe has been developed. In this so called "Direct collapse black hole model" very large gas clouds with masses of 10 000 -100 000 solar masses collapse directly to seed supermassive black holes.

A prerequisite for this direct collapse is that the gas cooling is very inefficient, as otherwise the collapsing gas cloud would fragment and result in star formation. In the very early Universe the only way of cooling gas at low temperatures was by emission from molecular hydrogen.

An article titled "Rapid formation of massive black holes in close proximity to embryonic protogalaxies" published in the prestigious Nature Astronomy journal on March 13th, 2017, shows for the first time that the near simultaneous formation of two galaxies can lead to a situation in which the radiation from the first galaxy can destroy the molecular hydrogen in the second galaxy just at the right time.

– In this way a massive direct collapse black hole seed can form in the second galaxy, which can evolve rather quickly to a billion solar mass black hole by the time they are observed in the Universe, Peter Johansson says.

The new simulation model describing the formation of supermassive black holes in the early Universe in more detail was developed at the University of Helsinki by Peter Johansson in close collaboration with Irish and American researchers.

###

The main author of the article, Dr. John Regan (Dublin City University) was formerly a postdoctoral researcher at the University of Helsinki

The research article published on the Nature Astronomy website, http://www.nature.com/articles/s41550-017-0075 and the open access version published on the ArXiv website: https://arxiv.org/abs/1703.03805

Image:

An artist impression depicting the formation of a supermassive black hole with a mass of tens of thousands of solar masses in close proximity to a protogalaxy. The primordial black hole is surrounded by an accretion disk and it has launched two symmetrical jets, whereas a large cluster of bright massive stars can be seen in the protogalaxy. The picture depicts the simulation at redshift z=24 corresponding to about 140 million years after the Big Bang. Credit: J. Wise (Georgia Tech) & J. Regan (Dublin City).

Contact information:

Peter Johansson, University of Helsinki, [email protected], +358 50 318 3930

Minna Meriläinen-Tenhu, Press Officer, University of Helsinki, @MinnaMeriTenhu, +358 50 415 0316

Media Contact

Peter Johansson
[email protected]
@helsinkiuni

http://www.helsinki.fi/university/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Day-2 Heart Imaging and Biomarkers in HIE Neonates

September 19, 2025

Decision Theory Insights on Clinical Entropy Challenges

September 19, 2025

Biorefinery Solutions for Valorizing Tropical Residues

September 19, 2025

Sugary Drink Sugars Boost Colorectal Cancer Spread via SORD

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Day-2 Heart Imaging and Biomarkers in HIE Neonates

Decision Theory Insights on Clinical Entropy Challenges

Biorefinery Solutions for Valorizing Tropical Residues

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.