• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists say they are a step closer to solving chronic bladder diseases

Bioengineer by Bioengineer
March 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using human cells, they have mapped how different proteins bind along the DNA to control which genes are active during barrier formation.

The inside of the bladder is covered by a specialised epithelial cell lining called the urothelium, which functions as a self-regenerating barrier to urine. The delicate balance between urothelial tissue repair and specialisation becomes disrupted in chronic diseases of the bladder.

A study, led by the University of York in collaboration with the Earlham Institute (EI) and published in Nature's Cell Death and Differentiation, uses lab-grown normal human urothelial cells to investigate the process of urinary barrier formation.

Cells of the body carry the same genetic code in the form of DNA, but epigenetic programming means that different sets of genes are used to make different specialised tissues. Which genes are active in a particular tissue is partly decided by proteins called transcription factors (TFs)1 which bind along the DNA and control whether genes are switched on or off.

The York research team had previously shown that human urothelial cells could be grown as non-specialised cells in the laboratory to form a functional barrier. They had found that some of the important genes involved in this process encoded TF proteins, but had assumed that all TFs acted together and in the same direction.

Using a bioinformatics approach to map TF binding to the DNA, the Earlham Institute revealed that the TFs are actually arranged in a more complex or non-hierarchical pattern, where some may even compete for binding to the same DNA regions at different stages of the cell specialisation process.

Lead author of the study, Professor Jennifer Southgate, Director of the Jack Birch Unit of Molecular Carcinogenesis (JBUMC) in the University of York's Department of Biology, said: "Using experimental methods to silence individual TF genes, we confirmed that TFs interact to define whether cells become specialised or non-specialised. In particular, we have shown one TF (called P63) is dominant in the non-specialised cells.

"It may sound esoteric, but it really is important to understand this process, particularly which transcription factors bind where and when, as this information provides the key to manipulating stem or precursor cells to form fully functional tissues for use in restorative medicine.

"This understanding of how TFs drive cell specialisation decisions will also help guide the search for drugs which can transform urothelial cell states as a therapeutic option."

Dr Janet Higgins in the Swarbreck Group at the Earlham Institute, who led the study's bioinformatics analysis, said: "Using specialist sequencing-based strategies and next-generation platforms within our Platforms and Pipelines Group, supervised by Lawrence Percival-Alwyn, we worked together with the Jack Birch Unit (JBU) to investigate the in-depth actions of the different TFs across the whole urothelial genome, by mapping their protein-binding activity along the DNA."

The urothelial experiments were designed and carried out by Dr Carl Fishwick as part of his PhD at the University of York, using the normal human urothelial (NHU) cell models developed in the JBU. From the data generated, EI were able to identify transcription factors and chromatin (protein/DNA compound) dynamics driving cell differentiation, some of which were confirmed in further experiments in the JBU.

Dr Fishwick said: "A key finding was that binding sites for different transcription factors were often co-located along the genome. This means that transcription factors could either compete or co-operate for binding to the same DNA regions. This can explain how cells mature within a tissue as transcription factors change. Our experiments also show that if a particular transcription factor is over-represented or absent, this can change the balance of gene expression in a cell and lead to disease."

###

This research was funded by BBSRC and York Against Cancer. Carl Fishwick was a PhD student funded on a BBSRC CASE studentship with GSK.

Media Contact

Alistair Keely
[email protected]
44-019-043-22153
@uniofyork

http://www.york.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Biorefinery Solutions for Valorizing Tropical Residues

Biorefinery Solutions for Valorizing Tropical Residues

September 19, 2025

Sugary Drink Sugars Boost Colorectal Cancer Spread via SORD

September 19, 2025

Introducing MoBluRF: A Revolutionary Framework for Clear 4D Reconstructions from Blurry Video Footage

September 19, 2025

ATP-Driven Movement Controls Immune Balance by Inhibiting MDA5

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biorefinery Solutions for Valorizing Tropical Residues

Sugary Drink Sugars Boost Colorectal Cancer Spread via SORD

Introducing MoBluRF: A Revolutionary Framework for Clear 4D Reconstructions from Blurry Video Footage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.