• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Potential approach to how radioactive elements could be ‘fished out’ of nuclear waste

Bioengineer by Bioengineer
March 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Manchester scientists have revealed how arsenic molecules might be used to 'fish out' the most toxic elements from radioactive nuclear waste – a breakthrough that could make the decommissioning industry even safer and more effective.

Elizabeth Wildman, a PhD student in the research group led by Professor Steve Liddle based at The University of Manchester, has reported the first examples of thorium with multiple bonds to arsenic to exist under ambient conditions on multi-gram scales where before they had only been prepared on very small scales at temperatures approaching that of interstellar space (3-10 Kelvin). The finding is to be published in the leading journal Nature Communications.

"Nuclear power could potentially produce far less carbon dioxide than fossil fuels, but the long-lived waste it produces is radioactive and needs to be handled appropriately," said Elizabeth Wildman, from Manchester's School of Chemistry.

"In order to find ways of separating, recycling and reducing the volume of nuclear waste, research has focussed on developing our understanding of how elements like thorium and uranium interact with elements from around the periodic table to potentially help improve nuclear waste clean-up."

Professor Liddle, Head of Inorganic Chemistry and Co-Director of the Centre for Radiochemistry Research at The University of Manchester, added: "We need to reduce the volume of nuclear waste in order to make it easier to handle and process it to remove benign elements or separate the high level from low level waste."

This research follows up on previous research published on uranium-phosphorus, uranium-arsenic, and thorium-phosphorus chemistry. This latest study looked at how the soft element arsenic interacts with thorium, because arsenic could in principle be used in organic molecules that bond to metal atoms and improve extraction processes.

"There is currently significant interest in using organic molecules to extract, selectively, metal ions from the 'soup' of nuclear waste and fish out the more radioactive and toxic ones and leave the rest behind," he added.

"This requires an understanding of chemical bonding and how the organic extractants bind to different metals. We can then exploit this knowledge to achieve separation by having them selectively bind to one type of metal and remove it from the soup.

"There is mounting evidence that the molecules that are best at this contain soft donor atoms to the metals. Thus, we need to understand soft donor-to-metal binding better.

"Arsenic is a soft donor, so we have prepared model complexes with it to understand the nature of the bonding. Until now, complexes exhibiting multiple bonds between thorium and arsenic were limited to spectroscopic experiments carried out at temperatures close to that of interstellar space (3-10 Kelvin) where only a few molecules were made at a time.

"Here, we have made molecules in multi-gram quantities and they are stable under ambient conditions enabling us to study them more straightforwardly. We might be able to use this new knowledge and understanding in a real system in the future."

###

The research was carried out in the School of Chemistry in a joint project between the universities of Manchester and Regensburg and was funded and supported by the Royal Society, European Research Council, Engineering and Physical Sciences Research Council, and COST.

Citation: "Triamidoamine Thorium-Arsenic Complexes with Parent Arsenide, Arsinidiide and Arsenido Structural Motifs" E. P. Wildman, G. Balázs, A. J. Wooles, M. Scheer, and S. T. Liddle, Nat. Comm., 2017, 8, 14769.

Media Contact

Jamie Brown
[email protected]
44-161-275-8383
@UoMNews

http://www.manchester.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.