• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New technology platform propels the use of ‘organs-on-chips’

Bioengineer by Bioengineer
March 8, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by scientists from Brigham and Women's Hospital has developed a novel technology platform that enables the continuous and automated monitoring of so-called "organs-on-chips" — tiny devices that incorporate living cells to mimic the biology of bona fide human organs.

One of the major technical challenges in using organs-on-chips is that current methods for measuring their responses are done mostly by hand, making it difficult to conduct long-term studies that seek to closely model human physiology and responses. Moreover, these measurements require the removal of relatively large volumes of fluid. If repeated several times, they can deplete the liquid in the system, rendering it inoperable.

The scientists, led by first author Yu Shrike Zhang together with senior author Ali Khademhosseini, created several innovations to address these challenges. These include the development of a biochemical sensor that can continuously and accurately measure different substances released by the organ-like system, as well as enhancements that allow the use of multiple physical sensors, which monitor features such as temperature, oxygen levels, and pH values.

In addition, they engineered a central router or "breadboard" that controls fluid flow to different components of the network. Equipped with a series of channels and valves, this breadboard functions as kind of circulatory system that enables researchers to program when and how often liquid runs through specific organs or sensors. The modular design further allows convenient replacement of individual modules when necessary. Zhang and his colleagues were able to use this approach to integrate a variety of different sensors.

"Our system is highly flexible and modular, so it can be readily adapted for use with different types of pre-existing chips and research applications," explains Zhang. "We hope this will expand the use of organs-on-chips in a variety of contexts, including drug screening and drug toxicity studies," adds Khademhosseini.

###

Paper cited: Zhang YS et al. "A Multi-Sensor-Integrated Organs-on-Chips Platform for Automated and Continual in situ Monitoring of Organoid Behaviors." PNAS

Media Contact

Johanna Younghans
[email protected]
617-525-6373
@BrighamWomens

http://www.brighamandwomens.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.