• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Computational method makes gene expression analyses more accurate

Bioengineer by Bioengineer
March 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PITTSBURGH–A new computational method can improve the accuracy of gene expression analyses, which are increasingly used to diagnose and monitor cancers and are a major tool for basic biological research.

Researchers from Carnegie Mellon University, Stony Brook University and Dana-Farber Cancer Institute said their method, called Salmon, is able to correct for the technical biases that are known to occur during RNA sequencing, or RNA-seq, the leading method for estimating gene expression. Furthermore, it operates at similar speeds as other fast methods – a critical factor as these tests are growing more common and numerous.

Their report is being published online March 6 by the journal Nature Methods. Carl Kingsford, associate professor in CMU's Computational Biology Department, said the Salmon source code is freely available online and already has been downloaded by thousands of users.

"Salmon provides a much richer model of the RNA-seq experiment and of the possible biases that are known to occur during sequencing," Kingsford said. This is important, he added, because this technique is increasingly used for classifying diseases and their subtypes, understanding gene expression changes during development and tracking the progression of cancer.

Though an organism's genetic makeup is static, the activity of individual genes varies greatly over time, making gene expression an important factor in understanding how organisms work and what occurs during disease processes. Gene activity can't be efficiently measured directly, but can be inferred by monitoring RNA, the molecules that carry information from the genes for producing proteins and other cellular activities.

RNA-seq is a leading technology for producing these snapshots of gene activity. But depending on the tissue being analyzed and the way each sample is prepared, various experimental biases can occur and cause RNA-seq "reads" to be over- or under-sampled from various genes, Kingsford said.

"Though we know many of the kinds of biases that can occur, modeling them has to occur on a sample-by-sample basis," he added. "And if you have to build a complicated bias model using traditional methods, it takes a really long time."

The researchers named the method after a fish famous for swimming upstream because it employs an algorithm that can estimate the effect of biases and the expression level of genes as experimental data streams by.

"In that way, it is able to build up a rich bias model and do so approximately as fast as other fast analysis tools," Kingsford said.

###

The research was led by Kingsford and Rob Patro, assistant professor of computer science at Stony Brook. The research team also included Geet Duggal of DNANexus, who worked on this project as a post-doctoral researcher at CMU, and Michael I. Love and Rafael A. Irizarry, biostatisticians at Dana Farber and the Harvard T.H. Chan School of Public Health. Love has since joined the University of North Carolina-Chapel Hill as an assistant professor of biostatistics.

The Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative, the National Science Foundation and the National Institutes of Health supported this research.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 13,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation.

Media Contact

Byron Spice
[email protected]
412-268-9068
@CMUScience

http://www.cmu.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.