• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Painkillers without dangerous side effects

Bioengineer by Bioengineer
March 3, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Charité – Universitätsmedizin Berlin have discovered a new way of developing painkillers. The team of researchers used computational simulation to analyze interactions at opioid receptors – the cell's docking sites for painkillers. When used in an animal model, their prototype of a morphine-like molecule was able to produce substantial pain relief in inflamed tissues. However, healthy tissues remained unaffected, suggesting that the severe side effects currently associated with these types of painkillers might be avoided. This research has been published in the current issue of the journal Science*.

Opioids are a class of strong pain killers. They are mainly used to treat pain associated with tissue damage and inflammation, such as that caused by surgery, nerve damage, arthritis or cancer. Common side effects associated with their use include drowsiness, nausea, constipation and dependency and, in some cases, respiratory arrest. "By analyzing drug-opioid receptor interactions in damaged tissues, as opposed to healthy tissues, we were hoping to provide useful information for the design of new painkillers without harmful side effects," explains Prof. Dr. Christoph Stein, Head of the Department of Anesthesiology and Surgical Critical Care Medicine on Campus Benjamin Franklin. In cooperation with PD Dr. Marcus Weber from the Zuse Institute Berlin, and with the help of innovative computational simulations, the researchers were able to analyze morphine-like molecules and their interactions with opioid receptors. They were able to successfully identify a new mechanism of action, which is capable of producing pain relief only in the desired target tissues – those affected by inflammation.

Treating postoperative and chronic inflammatory pain should now be possible without causing side effects. Doing so would substantially improve patient quality of life. The study's first authors, Dr. Viola Spahn and Dr. Giovanna Del Vecchio, explain: "In contrast to conventional opioids, our NFEPP-prototype appears to only bind to, and activate, opioid receptors in an acidic environment. This means it produces pain relief only in injured tissues, and without causing respiratory depression, drowsiness, the risk of dependency, or constipation." After designing and synthesizing the drug prototype, the researchers subjected it to experimental testing. Using computer modeling, the researchers simulated an increased concentration of protons, thereby mimicking the acidic conditions found in inflamed tissues. "We were able to show that the protonation of drugs is a key requirement for the activation of opioid receptors," conclude the authors. Their findings, which may also apply to other types of pain, may even find application in other areas of receptor research. Thereby, the benefits of improved drug efficacy and tolerability are not limited to painkillers, but may include other drugs as well.

###

*V. Spahn, G. Del Vecchio, D. Labuz, A. Rodriguez-Gaztelumendi, N. Massaly, J. Temp, V. Durmaz, P. Sabri, M. Reidelbach, H. Machelska, M. Weber, C. Stein. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science. 2017 March 3. doi: 10.1126/science.aai8636.

Contact:

Prof. Dr. Christoph Stein
Head of the Department of Anesthesiology and Surgical Critical Care Medicine on Campus Benjamin Franklin
Tel: +49 30 450 551 522
E-Mail: [email protected]

Links:

Department of Anesthesiology and Surgical Critical Care Medicine on Campus Benjamin Franklin
http://anaesthesie.charite.de/

Media Contact

Prof. Dr. Christoph Stein
[email protected]
49-304-505-51522

http://www.charite.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.