• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new role for an old immune cell may lead to novel therapies for infection and cancer

Bioengineer by Bioengineer
March 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study has identified a previously undescribed role for a type of unconventional T cell with the potential to be used in the development of new therapies for infection and cancer.

The study, published today in Nature Communications, shows that Gamma Delta T cells are able to generate immunological memory against previous infections and cancerous targets.

The results challenge the textbook description of Gamma Delta T cells as 'natural born killers' with an innate ability to recognise and destroy abnormal cells.

Lead author of the study, Professor Ben Willcox from the Institute of Immunology and Immunotherapy at the University of Birmingham, explains the key findings: "Instead of being 'natural born killers', we found these cells are actually quite smart. They adapt to and remember what they have encountered in life, which may include infections and pre-cancerous cells.

"This phenomenon of 'immunological memory' is what current vaccines exploit, but because Gamma Delta T cells recognise their targets in a different way, they present novel routes to generate vaccines, and also cell therapy approaches against infection and cancer."

In order to harness these "adaptive" abilities of Gamma Delta T cells, work is now required to identify the mechanism by which they recognise abnormal cells.

"We are working with other partners to understand exactly how these cells recognise signs of abnormality in infection and cancer, focussing on human cohorts. This knowledge will be crucial to help us build on the current study and explore how to develop new cell therapies and vaccines that exploit Gamma Delta T cells," adds Professor Willcox.

###

Media Contact

Liz Bell
[email protected]
44-012-141-42772
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

New Metabolic Syndrome Score Validated in Teens

New Metabolic Syndrome Score Validated in Teens

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025

Hydrocortisone Use in Extremely Preterm Infants

September 20, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Syndrome Score Validated in Teens

Low PDA Shunt Linked to Premature Infant Risks

Hydrocortisone Use in Extremely Preterm Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.