• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanoinjection increases survival rate of cells

Bioengineer by Bioengineer
March 1, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Bielefeld University

In a new study to be found in 'Scientific Reports' published by 'Nature', they show that with this method, nine out of ten cells survive being injected with foreign molecules.

One of the most well-known methods for studying bacterial, plant, and animal cells is fluorescence microscopy. When using this method, proteins or other structures in a cell are stained with the help of fluorescent probes. These molecules are fluorescent. Light excitation makes them glow, thereby illuminating the labeled structures inside the cell. 'The method works very well on fixed, that is non-living cells,' says Professor Dr. Thomas Huser, head of the Biomolecular Photonics research group. 'However, the problem is that much of what we want to know can be gained only from living cells.'

Dr. Simon Hennig adds: 'Living cells impede the intrusion of most fluorescent probes.' The physicist is working in Huser's research group. To overcome this resistance when delivering fluorescent probes into the cells, he has developed the method of nanoinjection. He uses a minute hollow glass pipette to deliver the fluorescent molecules to individual cells. The process is controlled by a computer. An instrument specially developed for nanoinjection inserts the pipette into the cell. The tip of this glass capillary is much smaller than that used in usual microinjection. Moreover, the process prevents the cell from increasing insize, because only the molecules are transferred and not the liquid in the pipette as well. 'The method is so precise that we can even deliver the molecules to the nucleus of a cell,' says Hennig.

The new study confirms that the method can be used to inject many types of probes and that is it very well tolerated by the cells. 'This proof was necessary, because previous techniques such as microinjection harm the cells so much that most do not survive the treatment,' says Hennig. His colleague Matthias Simonis tested the nanoinjection method on more than 300 cells and compared the results with those of microinjection. The main finding was that 92 per cent of the cells survived nanoinjection compared to 40 per cent for microinjection. 'The analyses also confirmed that these treated cells cells proliferated normally,' says Hennig. According to the physicist, proliferation is not just a sign of a healthy cell. It also opens up new possibilities for experiments. For example, a negative influence of the injection can be ruled out in advance. This allows researchers to study the injected cells without having to take the effect of the injection into account as well. Hennig views nanoinjection as a particularly promising way of studying, for example, how single cells react with each other.

###

Original publication:

Matthias Simonis, Wolfgang Hübner, Alice Wilking, Thomas Huser & Simon Hennig: Survival rate of eukaryotic cells following electrophoretic nanoinjection. Nature Publishing Group, http://dx.doi.org/10.1038/srep41277, published on the 25th of January 2017

Further information is available online at:

Description of nanoinjection: http://www.physik.uni-bielefeld.de/biopho/index.php/en/research/live-cell-microscopy/nano-injection

Media Contact

Dr. Simon Hennig
[email protected]
49-521-106-5434
@uniaktuell

http://www.uni-bielefeld.de/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.