• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

People eating beef are less likely to live near the industry’s pollution, Pitt researchers found

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
County-level nitrogen losses
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anyone who’s researched ways to lower their environmental impact has likely heard they should eat less meat, particularly beef. Even at scale, cows are an inefficient way to feed people — it takes nearly four tons of water to recoup one ton of beef, and many farming practices emit greenhouse gasses and pollutants.

Anyone who’s researched ways to lower their environmental impact has likely heard they should eat less meat, particularly beef. Even at scale, cows are an inefficient way to feed people — it takes nearly four tons of water to recoup one ton of beef, and many farming practices emit greenhouse gasses and pollutants.

University of Pittsburgh researchers are the first to trace one of those pollutants, nitrogen, along the U.S. beef supply chain at the county level. They found high spatial disconnect between where beef is eaten and where nitrogen’s impacts are felt.

Previous research looked at production-based impacts, said Vikas Khanna, professor of civil and environmental engineering in the Swanson School of Engineering. “They’ve asked, ‘what does it take to produce a certain quantity of beef?’ And they tend to report average environmental impacts,” such as how much water, greenhouse gasses or other pollutants result over the entire process.

In a paper published in the journal Environmental Science and Technology, Khanna and PhD student Anaís Ostroski map the impacts of nitrogen county by county, providing the clearest picture yet of which areas face some of the environmental effects of cattle farming. Khanna and Ostroski are joined by Oleg Prokopyev, a former professor of industrial engineering at Pitt now at the University of Zurich.  

“It is essential to measure nitrogen losses and understand where they happen due to the cascading effects on the environment,” said Ostroski, the paper’s lead author. “A single molecule of reactive nitrogen can cause multiple adverse effects until it is converted back to stable atmospheric nitrogen. Food supply chains have grown increasingly complex; we found that when beef is consumed in a given county, it is associated with nitrogen losses in more than 200 counties on average.”

Our atmosphere is 79% nitrogen, but atmospheric nitrogen has strong bonds and doesn’t react with other substances. The nitrogen used for fertilizer, however, is reactive. As it accumulates it can create surface-level ozone, which can lead to respiratory problems. When rain washes nitrogen fertilizers from croplands into waterways, it can spark runaway algae growth, which takes oxygen from the water, suffocating fish and other marine life.

In 2017, beef consumption was responsible for about 1,330 gigagrams of nitrogen released into the environment — that’s enough to fertilize about 19.5 million acres, or 20% of all the corn grown in the United States.  

When beef is consumed in a given county, it is associated with nitrogen losses in more than 200 counties on average.

Anaís Ostroski
its effects are not felt equally across the country.

The new research shows people living along the East Coast and in large swaths of California, Nevada and Arizona are more than 600 miles away from the nitrogen that entered the environment in service of their burger. 

The pollution happens in a few different ways along the supply chain. Cows are fed food that is grown using nitrogen fertilizers. Much of that is leached away by rainwater, tainting nearby land and water supplies.

Beef cattle are kept in processing facilities where nitrogen is released in wastewater. Here, Khanna sees an opportunity to minimize nitrogen pollution by implementing a circular economy model where valuable nutrients like nitrogen and phosphorus are recovered from the wastewater.

“Recouping nutrients from animal wastewaters would be a win-win solution,” he said. Nitrogen would be kept out of the ecosystem, and farmers could reuse the nitrogen as fertilizer while also reusing the treated water for irrigation.

While it’s important to look at technological solutions to reduce the impact of cattle farming on the environment, Khanna has words of caution about technological exuberance, “Let’s not just look at the trees and miss the forest. It is important to look at potential solutions from a holistic perspective to make sure we are not solving one problem at the expense of others.”



Journal

Environmental Science & Technology

DOI

10.1021/acs.est.4c01651

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Tracing Nitrogen Flows Associated with Beef Supply Chains: A Consumption-Based AssessmentClick to copy article link

Article Publication Date

2-Aug-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.