• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum researchers publish ‘exciting’ particle prediction

by
August 27, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bruno Uchoa, a professor of condensed matter physics, and Hong-yi Xie, a postdoctoral fellow in condensed matter physics at the University of Oklahoma, have published research in the journal Proceedings of the National Academy of Sciences that predicts the existence of a new type of exciton. These particles could lead to the advancement of future quantum devices.

Xie and Uchoa

Credit: Sophia Armoudian, University of Oklahoma

Bruno Uchoa, a professor of condensed matter physics, and Hong-yi Xie, a postdoctoral fellow in condensed matter physics at the University of Oklahoma, have published research in the journal Proceedings of the National Academy of Sciences that predicts the existence of a new type of exciton. These particles could lead to the advancement of future quantum devices.

Excitons are created when electrons and the holes they form, which are oppositely charged, bind together. Excitons have long been observed in insulators and semiconductors, the materials that power modern computers. In this publication, Uchoa and Xie have predicted the existence of a new type of exciton with finite vorticity, called a ‘topological exciton,’ that exists in a class of materials known as Chern insulators.

Topology is a branch of mathematics that studies the properties of shapes and surfaces that don’t change, even when stretched, twisted or bent. For example, a doughnut with a hole in the middle and a mug with a hole in the handle both describe surfaces that belong to the same topological class because each can be continuously deformed into the other. Scientists use topological ideas to describe materials with electronic properties that are unaffected by imperfections. Churn refers to a class in topology where the key characteristics of shapes can be represented by whole numbers.

“Chern insulators are materials that allow electrons to orbit the edge of a material but do not conduct any electricity internally,” Uchoa said. “They do, however, spontaneously form unidirectional currents flowing either clockwise or counterclockwise along the edges of a two-dimensional material. These one-way currents are precisely measured in basic units of current.”  

In this work, Uchoa and Xie predicted that, under well-defined conditions, excitons created by shining light through Chern insulators would inherit the nontrivial topological properties of the electrons and holes in the host material. This prediction is powerful because it is based on fundamental concepts instead of computer simulations.

“In insulators, light excites electrons from the valence band where they normally live to the conduction band where they can move freely,” Unchoa said. “When those two bands are topologically distinct, the resulting excitons are topological themselves. Once those excitons decay by releasing energy, they were predicted to spontaneously emit circularly polarized light.”

According to Xie, these topological excitons could be used to design a novel class of optical devices. At low temperatures, excitons could form a new type of neutral superfluid that could be used to create powerful polarized light emitters or advanced photonic devices for quantum computing.

“The prediction of this composite particle could help develop new optoelectronic devices based on topology,” Uchoa said. “Not only could it aid in quantum communication applications, but it could also help engineer qubits that have two entangled states, on and off, based on the vorticity or polarization of the emitted light. I’m very excited about these possibilities.”

Learn more about this research through the Uchoa Group and about quantum research at OU’s Center for Quantum Research and Technology.

About the project

“Theory of topological exciton insulators and condensates in flat Chern bands” has been published in the journal Proceedings of the National Academy of Sciences, DOI No. 10.1073/pnas.2401644121. Xie and Uchoa, the Ted and Cuba Webb Presidential Professor in the Dodge Family College of Arts and Sciences, collaborated with researchers from Harvard University and the City University of New York.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2401644121

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Theory of topological exciton insulators and condensates in flat Chern bands

Article Publication Date

23-Aug-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Polycystic Ovary Syndrome Affects Atherogenic Plasma Index

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.