• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tumor protein could hold key to pancreatic cancer survival

Bioengineer by Bioengineer
February 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

But research led by the University of Melbourne reported in the International Journal of Cancer, could eventually improve treatments with the identification of a protein that appears to help tumour cells become more aggressive.

In Australia this year, some 3,200 new cases of Pancreatic cancer will be diagnosed, and 2,900 patients will die of the disease.

University of Melbourne pancreatic surgeon Mehrdad Nikfarjam, and research associates, have identified a protein called p21-activated kinase 1 (PAK1), in specific tumour cells called stellate cells.

Researchers were able to slow down growth and spread of tumors by targeting this protein in stellate cells in animal models, in combination with current chemotherapies.

Stellate cells are responsible for the fibrosis or scarring that surrounds pancreatic tumour cells, reducing the effectiveness of chemotherapy.

The study investigated the role of PAK1 in these stellate cells and how they communicate with the tumour cells.

PAK1 was found to be involved in the fibrotic production, proliferation and death of these cells, and could assist tumour cells to become more aggressive.

Targeting PAK1 resulted in decreased scar tissue formation, reduced tumour growth, increased tumour sensitivity to chemotherapy and increased survival of mice.

Associate Professor Mehrdad Nikfarjam said that although further testing is needed, an inhibitor could potentially increase survival of patients with pancreatic cancer.

"Targeting PAK1 could reduce the fibrosis surrounding pancreatic tumours and allow conventional chemotherapies to have a greater effect on the tumours.

"PAK1's role as an important signalling protein in both the tumour and tumour environment is an important finding in unravelling the puzzle that is pancreatic cancer," Associate Professor Nikfarjam said.

###

Media Contact

Annie Rahilly
[email protected]
61-390-355-380
@unimelb

http://www.unimelb.edu.au

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

September 21, 2025

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.