• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy

by
August 13, 2024
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metamaterials, engineered at the nanoscale, exhibit unique properties not found in naturally occurring materials. These properties arise from their nanoscale building blocks, which, until now, have been challenging to observe directly due to their size being smaller than the wavelength of light. The team’s research overcomes this limitation by employing a new microscopy technique that can simultaneously reveal both the nano and macro structures of these materials.

Tailoring light with Nanomaterials

Credit: © FHI

Tailoring light with Nanomaterials

Metamaterials, engineered at the nanoscale, exhibit unique properties not found in naturally occurring materials. These properties arise from their nanoscale building blocks, which, until now, have been challenging to observe directly due to their size being smaller than the wavelength of light. The team’s research overcomes this limitation by employing a new microscopy technique that can simultaneously reveal both the nano and macro structures of these materials.

A New Window into the Nano World

The key finding of this research is a methodological breakthrough that enables the visualization of structures previously too small to be seen with traditional microscopy. By using light in innovative ways, the scientists have discovered how to “trap” one color of light within the structure, and use a mixing with a second color that can leave the structure to visualize this trapped light. This trick reveals the hidden world of nanoscale optical metamaterials.

Over Five Years of Development

This achievement is the result of more than five years of dedicated research and development, utilizing the unique features of the Free Electron Laser (FEL) at the Fritz Haber Institute. This type of microscopy is particularly special because it allows for a deeper understanding of metasurfaces, paving the way for advancements in technologies such as lens design, with the ultimate goal of creating flatter, more efficient optical devices.

The Future of Flat Optics

By enhancing our understanding of metasurfaces, this research opens the door to the development of novel light sources and the design of coherent thermal light sources. „We are just at the beginning,” states the research team, „but the implications of our work for the field of flat optics and beyond are immense. Our technique not only allows us to see the complete performance of these nanostructures but also to improve upon them, shrinking 3D optics down to 2D, and making everything smaller and flatter.”

Metamaterials, engineered at the nanoscale, exhibit unique properties not found in naturally occurring materials. These properties arise from their nanoscale building blocks, which, until now, have been challenging to observe directly due to their size being smaller than the wavelength of light. The team’s research overcomes this limitation by employing a new microscopy technique that can simultaneously reveal both the nano and macro structures of these materials.

A New Window into the Nano World

The key finding of this research is a methodological breakthrough that enables the visualization of structures previously too small to be seen with traditional microscopy. By using light in innovative ways, the scientists have discovered how to “trap” one color of light within the structure, and use a mixing with a second color that can leave the structure to visualize this trapped light. This trick reveals the hidden world of nanoscale optical metamaterials.

Over Five Years of Development

This achievement is the result of more than five years of dedicated research and development, utilizing the unique features of the Free Electron Laser (FEL) at the Fritz Haber Institute. This type of microscopy is particularly special because it allows for a deeper understanding of metasurfaces, paving the way for advancements in technologies such as lens design, with the ultimate goal of creating flatter, more efficient optical devices.

The Future of Flat Optics

By enhancing our understanding of metasurfaces, this research opens the door to the development of novel light sources and the design of coherent thermal light sources. „We are just at the beginning,” states the research team, „but the implications of our work for the field of flat optics and beyond are immense. Our technique not only allows us to see the complete performance of these nanostructures but also to improve upon them, shrinking 3D optics down to 2D, and making everything smaller and flatter.”

Metamaterials, engineered at the nanoscale, exhibit unique properties not found in naturally occurring materials. These properties arise from their nanoscale building blocks, which, until now, have been challenging to observe directly due to their size being smaller than the wavelength of light. The team’s research overcomes this limitation by employing a new microscopy technique that can simultaneously reveal both the nano and macro structures of these materials.

A New Window into the Nano World

The key finding of this research is a methodological breakthrough that enables the visualization of structures previously too small to be seen with traditional microscopy. By using light in innovative ways, the scientists have discovered how to “trap” one color of light within the structure, and use a mixing with a second color that can leave the structure to visualize this trapped light. This trick reveals the hidden world of nanoscale optical metamaterials.

Over Five Years of Development

This achievement is the result of more than five years of dedicated research and development, utilizing the unique features of the Free Electron Laser (FEL) at the Fritz Haber Institute. This type of microscopy is particularly special because it allows for a deeper understanding of metasurfaces, paving the way for advancements in technologies such as lens design, with the ultimate goal of creating flatter, more efficient optical devices.

The Future of Flat Optics

By enhancing our understanding of metasurfaces, this research opens the door to the development of novel light sources and the design of coherent thermal light sources. „We are just at the beginning,” states the research team, „but the implications of our work for the field of flat optics and beyond are immense. Our technique not only allows us to see the complete performance of these nanostructures but also to improve upon them, shrinking 3D optics down to 2D, and making everything smaller and flatter.”



Journal

Advanced Materials

DOI

10.1002/adma.202312507

Article Title

Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces

Article Publication Date

19-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.