• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of the highest-energy gamma-ray line in the universe

by
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
Illustration of the observation of the brightest ever gamma-ray burst (GRB 221009A) by GECAM-C and Fermi/GBM
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This study is led by Prof. Shaolin Xiong (Institute of High Energy Physics, Chinese Academy of Sciences) and Prof. Jirong Mao (Yunnan Observatories, Chinese Academy of Sciences) and Prof. Shuang-Nan Zhang (Institute of High Energy Physics, Chinese Academy of Sciences). Gamma-ray bursts (GRBs) are the most energetic explosion phenomena and have important clues about the stars, the galaxies, and the universe. Since the discovery of GRB in the 1960s, the brightest ever GRB (named GRB 221009A) swept the Earth on October 9th, 2022, and its overwhelming brightness even caused troubles for many gamma-ray telescopes to observe normally. Fortunately, GECAM-C, the third instrument of the GECAM series that Shaolin Xiong proposed, provided an accurate and high-resolution measurement of the burst, thanks to its dedicated design for bright events. Considering the record-breaking brightness and rich observation data sets, the research team quickly realized that this GRB provides a precious opportunity to search for gamma-ray lines in the spectrum, which are critically important but never detected in GRB before.

This study is led by Prof. Shaolin Xiong (Institute of High Energy Physics, Chinese Academy of Sciences) and Prof. Jirong Mao (Yunnan Observatories, Chinese Academy of Sciences) and Prof. Shuang-Nan Zhang (Institute of High Energy Physics, Chinese Academy of Sciences). Gamma-ray bursts (GRBs) are the most energetic explosion phenomena and have important clues about the stars, the galaxies, and the universe. Since the discovery of GRB in the 1960s, the brightest ever GRB (named GRB 221009A) swept the Earth on October 9th, 2022, and its overwhelming brightness even caused troubles for many gamma-ray telescopes to observe normally. Fortunately, GECAM-C, the third instrument of the GECAM series that Shaolin Xiong proposed, provided an accurate and high-resolution measurement of the burst, thanks to its dedicated design for bright events. Considering the record-breaking brightness and rich observation data sets, the research team quickly realized that this GRB provides a precious opportunity to search for gamma-ray lines in the spectrum, which are critically important but never detected in GRB before.

For this goal, the research team executed a comprehensive spectral analysis of the joint observation data from two space gamma-ray monitors. “GECAM-C provided an accurate spectral measurement for the full course of this burst, while Fermi/GBM could extend the spectrum to a higher energy band. They together can give a very wide range of spectrum measurement and line search,” Shaolin Xiong says.

“Soon after we started this analysis, we noticed that, above the continuum spectrum that is usually seen in GRBs, there are some interesting excess features in some time intervals of this burst. We thought they might be the grail we’ve been looking for,” said the first author of this paper, Yanqiu Zhang, a PhD student at the Institute of High Energy Physics.

“But we knew there are so many things to check out before we claim it, because many elusive factors, such as background subtraction, instrumental effects, and systematic errors in detector response, can lead to fake features in the spectrum for bright bursts; thus, we have to investigate all these issues as much as possible. Having two telescopes to cross-check each other helped a lot in this study,” Shaolin Xiong says.

After the very challenging analyses of these issues in many months, the research group managed to derive the reliable spectra of this GRB and find a series of emission lines over the typical GRB spectra. Remarkably, they further found that both the line energy and flux evolve as a power law function of time. “Such a physical evolution cannot be produced by any factors we can think of and thus provides a solid proof of the reality and the GRB origin of these gamma-ray lines,” Shaolin Xiong says.

Interestingly, the team noticed that the line energy is up to 37 million electron volts during the bright part of the burst. “To our knowledge, a significant gamma-ray line with such high energy is never seen before; thus, we believe it is the highest-energy spectral line observed in the universe so far,” Shuang-Nan Zhang says.

In this work, the team also discussed some possible scenarios to explain the observed gamma-ray line features, including the power-law evolution of the line energy and flux and the nearly constant ratio of the line width to line energy. “These discoveries shed new and unique light on the physics of GRB and its relativistic jet. More theoretical studies are required to fully understand the observed gamma-ray line,” Jirong Mao says.



Journal

Science China Physics Mechanics and Astronomy

DOI

10.1007/s11433-023-2381-0

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.