• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Breakthrough in molecular control: new bioinspired double helix with switchable chirality

by
August 8, 2024
in Chemistry
Reading Time: 5 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The deoxyribonucleic acid or DNA, the molecular system that carries the genetic information of living organisms, can transcribe and amplify information using its two helical strands. Creating such artificial molecular systems that match or surpass DNA in functionality is of great interest to scientists. Double-helical foldamers are one such molecular system.

Double-helical mononmetallofoldamers with inverse helicity

Credit: Hidetoshi Kawai from Tokyo University of Science

The deoxyribonucleic acid or DNA, the molecular system that carries the genetic information of living organisms, can transcribe and amplify information using its two helical strands. Creating such artificial molecular systems that match or surpass DNA in functionality is of great interest to scientists. Double-helical foldamers are one such molecular system.

 

Helical foldamers are a class of artificial molecules that fold into well-defined helical structures like helices found in proteins and nucleic acids. They have garnered considerable attention as stimuli-responsive switchable molecules, tuneable chiral materials, and cooperative supramolecular systems due to their chiral and conformational switching properties. Double-helical foldamers exhibit not only even stronger chiral properties but also  unique properties, such as the transcription of chiral information from one chiral strand to another without chiral properties, enabling potential applications in higher-order structural control related to replication, like nucleic acids. However, the artificial control of the chiral switching properties of such artificial molecules remains challenging due to the difficulty in balancing the dynamic properties required for switching and stability. Although various helical molecules have been developed in the past, reversal of twist direction in double-helix molecules and supramolecules has rarely been reported.

 

In a breakthrough, a team of researchers from Tokyo University of Science, Japan, led by Professor Hidetoshi Kawai from the Department of Chemistry, Faculty of Science, and including Mr. Kotaro Matsumura from the Department of Chemistry, developed a novel mechanical motif, called double-helical monometallofoldamers with controllable chiral switching. Prof. Kawai explains, “In this research, we succeeded in synthesizing a double helical mononuclear complex bridged with a single metal cation in the center of the helices to balance both stability and dynamic properties. These structures can undergo inversion switching by changing the left and right winding directions of both helix strands using different solvents.” Their study was published in the Journal of the American Chemical Society on July 19, 2024.

 

The researchers synthesized the double-helical monometallofoldamers from two bipyridine-type strands with L-shaped units, which after forming a complex with a zinc cation formed double-helical structures. X-ray crystallography revealed the double-helical structures with a metal cation in their center. The researchers investigated the switchability of monometallofoldamers in response to external stimuli and found that helix terminals of the double-helical form can unfold in solutions, resulting in the open form, favored at high temperatures, and refold to the double-helical form, favored at low temperatures.

 

Interestingly, the helicity of the double-helical monometallofoldamer with chiral chains can be controlled in response to achiral solvents. For example, in non-polar solvents (toluene, hexane, Et2O), it becomes left-handed or M-form, and in Lewis basic solvents (acetone, DMSO), it becomes right-handed or the P-form. The conformation of chiral chains introduced into the helix strands was found to be important for this M/P switching. Furthermore, they found that when a helix strand with chiral chains is mixed with a strand without chiral chains, the winding direction of the helix is transmitted and amplified to the achiral strand without chiral chains, with the helicity inversion ability maintained.

 

Emphasizing the significance of this new molecule, Mr. Matsumura says, “Our synthesized double-helical monometallofoldamers has the potential to be applied to new switching chiral materials that output diverse chiral properties by small inputs and can be used to develop chiral sensors. In addition, we expect that this novel molecular structure will lead to facilitate the genesis of deracemized and organized supramolecular systems as those found in nature by transmitting and amplifying their superior chiral properties.”

 

Overall, this study marks a significant step towards realizing artificial controllable double-helical structures, paving the way for novel high-order molecular systems and molecular information processing.

 

***

 

Reference                     

DOI: 10.1021/jacs.4c06560

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society,” TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

About Professor Hidetoshi Kawai from Tokyo University of Science

Hidetoshi Kawai is currently a Professor at the Department of Chemistry, Faculty of Science at Tokyo University of Science. He obtained his Ph.D. from Hokkaido University in 2000. He has over 130 publications with over 2500 citations. At Tokyo University of Science, he also leads the Kawai lab. Additionally, he served as a guest lecturer at the Université de Strasbourg, France in 2016. His research interests include supramolecular chemistry, structural organic chemistry, high-efficiency molecular conversion, and self-amplifying molecules among others.

 

Funding information

This work was supported by the JSPS KAKENHI (Grant 461 Numbers JP20K05478 and JP24K08385 for H.K. and 462 JP16J08668 for K. T.) and JST SPRING (Grant Number 463 JPMJSP2151 for K. M.).



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.4c06560

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

M/P Helicity Switching and Chiral Amplification in Double-Helical Monometallofoldamers

Article Publication Date

19-Jul-2024

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.