• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

ASU researchers explore cancer susceptibility in birds

by
July 31, 2024
in Biology
Reading Time: 4 mins read
0
Birds
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In one of the largest studies of cancer susceptibility across bird species, researchers at Arizona State University describe an intriguing relationship between reproductive rates and cancer susceptibility.

Birds

Credit: Graphic by Jason Drees

In one of the largest studies of cancer susceptibility across bird species, researchers at Arizona State University describe an intriguing relationship between reproductive rates and cancer susceptibility.

The research, conducted by an international team of scientists, analyzed data from more than 5,700 bird necropsies across 108 species. They discovered birds that lay more eggs per clutch tend to have higher rates of cancer. The findings shed new light on evolutionary trade-offs between reproduction and survival in birds and have implications for health and disease across the tree of life.

By examining how different energy allocation strategies affect cancer development in birds, researchers gain insights into relevant mechanisms for studying human cancers. This understanding could lead to new strategies for preventing and treating cancer, highlighting the interconnectedness of biological research across species.

“Birds are exceptional for many reasons but one of them is the fact that birds get less cancer than mammals, and we don’t know why,” says Carlo Maley, corresponding author of the new study. “We’d like to understand how birds avoid getting cancer and see if we can use that to help prevent cancer in humans.”

Maley directs the Arizona Cancer and Evolution Center, is a researcher with the Biodesign Center for Biocomputing, Security and Society, and is a professor with the School of Life Sciences at ASU.

The group’s findings appear in the Oxford Academic journal Evolution, Medicine, and Public Health.

The study was conducted by an interdisciplinary team of researchers from Arizona State University, the University of California Santa Barbara, North Carolina State University and several European universities. The team brought together expertise in evolutionary biology, veterinary medicine and cancer research.

Cooperation and cancer

While cancer is an ever-present hazard for nearly all multicellular organisms, the susceptibility and risk factors for cancer in birds have not been as extensively studied as it has in mammals. Birds, and all other organisms, have limited energy resources that they can allocate to various functions. When more energy is devoted to reproduction, less is available for maintaining the health of the body, potentially leading to a higher risk of diseases, including cancer.

Life history theory is a part of evolutionary ecology that examines how evolutionary pressures shape the trade-offs between different life functions. In birds, species that have high reproductive rates and invest heavily in raising offspring have less energy available for DNA repair, making them more susceptible to cancer. The same may be true in mammals, as the authors have previously shown.

Such studies also help to explain why some long-lived species, which tend to have fewer offspring and invest more in maintenance and longevity, might have lower cancer rates. In contrast, species with high reproductive rates and shorter lifespans may prioritize reproduction over longevity and maintenance, increasing their vulnerability to cancer.

“It is interesting that depending on the reproductive trait that we focus on, the trade-off between reproduction and bodily maintenance is not always clear,” says co-first author Stefania Kapsetaki. “For example, investing in a trait linked to increased reproduction does not always mean less investment in a trait linked with bodily maintenance. It is important to bear in mind that patterns of avian cancer prevalence are affected by multiple interacting components, some known and others yet to be discovered.”

The study found no significant correlation between body size or lifespan and cancer risk in birds, contrary to what might be expected. These results highlight a phenomenon in biology called “Peto’s paradox,” in which larger, longer-lived animals sometimes display lower cancer rates despite having more cells that could potentially become cancerous.

In earlier research, Maley and his colleagues explored how large mammals, including whales and elephants, have developed sophisticated strategies of cancer suppression, which may hold clues in the battle against human cancers.

The current study finds that birds with larger clutch sizes (more eggs per brood) had significantly higher rates of malignant cancers. This suggests a potential trade-off between reproduction and cancer defense mechanisms. Other factors like incubation length, physical differences between males and females, and the bird’s sex were not significantly associated with cancer prevalence.

Costs of reproduction

The findings add to a growing body of evidence linking reproductive investment to the risk of disease in animals. The researchers used advanced statistical techniques to account for the evolutionary relationships between different bird species, allowing them to identify patterns that likely arose from natural selection rather than chance. This suggests there may be optimal levels of cancer defense for different ecological niches, which can occasionally shift due to environmental changes.

Data on cancer susceptibility came from necropsies performed at 25 different zoological institutions over 25 years, and the life history information was compiled from existing scientific databases on bird biology. The researchers emphasized their findings are based on birds living under human care, which may differ from wild populations in some respects.

Avenues for future research

The study opens new questions for future investigation: What are the molecular mechanisms underlying the relationship between clutch size and cancer risk? How do ecological factors influence cancer susceptibility in wild bird populations? And for the bird species that have extremely low cancer rates, how are they preventing cancer?

The findings could have implications for the care and conservation of bird species.

Zoos and wildlife centers may need to consider cancer screening more carefully for species with larger clutch sizes. Further, conservation efforts for endangered bird species may benefit from considering cancer risk as part of overall population health management.

The research demonstrates the value of applying evolutionary thinking to cancer biology. By studying how different species manage the risk of cancer, researchers may uncover new strategies for prevention and treatment that could benefit both human and veterinary medicine.



DOI

10.1093/emph/eoae011

Method of Research

Literature review

Subject of Research

Animals

Article Title

Life history traits and cancer prevalence in birds

Article Publication Date

27-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.