• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Daily rhythms depend on receptor density in biological clock

by
July 24, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In humans and other animals, signals from a central circadian clock in the brain generate the seasonal and daily rhythms of life. They help the body to prepare for expected changes in the environment and also optimize when to sleep, eat and do other daily activities.

Daniel Granados-Fuentes

Credit: Washington University in St. Louis

In humans and other animals, signals from a central circadian clock in the brain generate the seasonal and daily rhythms of life. They help the body to prepare for expected changes in the environment and also optimize when to sleep, eat and do other daily activities.

Scientists at Washington University in St. Louis are working out the particulars of how our internal biological clocks keep time. Their new research, published July 24 in the Proceedings of the National Academy of Sciences, helps answer longstanding questions about how circadian rhythms are generated and maintained.

In all mammals, the signals for circadian rhythms come from a small part of the brain called the suprachiasmatic nucleus, or SCN. Several previous studies from WashU and other institutions have attempted to determine if a neurotransmitter called GABA plays a role in synchronizing circadian rhythms among individual SCN neurons. However, the role of GABA in the SCN had remained unclear.

“In the past, we have published data on pharmacological blocking of the GABA system and found only modest increases in synchrony among SCN cells,” said Daniel Granados-Fuentes, a research scientist in Arts & Sciences and first author of the new study.

The chemical interventions that he and other scientists introduced didn’t seem to change the way that neurons in the SCN fired that much, or to affect circadian regulation of actual behavior in mice, either.

So Granados-Fuentes and his team members took a different approach. The researchers changed the expression of two kinds of GABA receptors to figure out if receptor density had any impact on synchrony or behavior.

“Tuning the number of receptors is considered to be important to regulate physiological processes like learning and memory, but not circadian rhythms,” Granados-Fuentes said. But in this case, changing the density of either γ2 or δ GABA receptors had a dramatic effect.

Reducing or mutating these receptors in the SCN of mice decreased the amplitude of their circadian rhythms to one-third. The mice in this study increased their daytime wheel-running and reduced their normal nocturnal running.

The researchers also found that reduction or mutation of either γ2 or δ GABA receptors halved the synchrony among, and amplitude of, circadian SCN cells as measured by firing rate or protein expression in vitro.

Overexpression of either of two GABA receptor types compensated for the loss of the other, suggesting that these two receptors can function in a similar way in the SCN, even though they have been described to mediate different physiological processes, Granados-Fuentes said.

Understanding circadian rhythms is important because people can suffer many negative consequences if these rhythms get disrupted. They can experience daytime fatigue, changes in hormone profiles, gastrointestinal issues, changes in mood and more.

“These findings open a possibility to understand if changes in the density of GABA receptors are important to regulate seasonal responses, for example how animals in nature respond to summer when days are long or winter when days are short,” Granados-Fuentes said.

Granados-Fuentes works in the laboratory of biologist Erik Herzog, the Viktor Hamburger Distinguished Professor in Arts & Sciences and a co-author of this study. Steven Mennerick, the John P. Feighner Professor of Neuropsychopharmacology at Washington University School of Medicine and a professor of psychiatry and of neuroscience, is a collaborator and co-author.

This research helped lead to a new grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health (NIH), for the Herzog laboratory with collaborators in WashU’s McKelvey School of Engineering and at Saint Louis University.


Research reported in this publication was supported by a grant from the NINDS (RO1NS121161). The study authors also thank the Taylor Family Institute for Innovative Psychiatric Research for support.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2400339121

Article Title

GABAA receptor subunit composition regulates circadian rhythms in rest–wake and synchrony among cells in the suprachiasmatic nucleus

Article Publication Date

26-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Breaking Boundaries: The Deaminative Giese Reaction Revolution

Breaking Boundaries: The Deaminative Giese Reaction Revolution

August 4, 2025
Catalytic C(sp2) Expansion of Alkylboranes

Catalytic C(sp2) Expansion of Alkylboranes

August 4, 2025

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

August 3, 2025

Bright Excitons Enable Optical Spin State Control

August 3, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    62 shares
    Share 25 Tweet 16
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lehigh University’s Christopher J. Kiely Honored with Prestigious Microanalysis Award for TEM Research

Sampling and Distribution of Riverbank Plastics Explained

Smoking’s Impact on Breast Cancer Screening

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.