• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CAR T cells more powerful when built with CRISPR, MSK researchers find

Bioengineer by Bioengineer
February 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Memorial Sloan Kettering Cancer Center (MSK) have harnessed the power of CRISPR/Cas9 to create more-potent chimeric antigen receptor (CAR) T cells that enhance tumor rejection in mice. The unexpected findings, published in Nature on February 22, uncover facets of CAR immunobiology and underscore the potential of CRISPR/Cas9 genome editing to advance immunotherapies for cancer.

CRISPR is a genome-editing tool that enables scientists to cut and manipulate a cell's DNA with high precision. In the Nature paper, MSK investigators show that CRISPR technology can deliver the CAR gene to a very specific location in the genome of the T cell. This precise approach creates CAR T cells with more stamina — they can kill tumor cells for longer because they are less prone to becoming exhausted. This could eventually lead to safer, more effective use of this powerful form of immunotherapy in patients.

"Cancer cells are relentless in their attempt to evade treatment, so we need CAR T cells that can match and outlast them," explained Michel Sadelain, MD, PhD, senior author on the Nature paper and Director of the Center for Cell Engineering and the Gene Transfer and Gene Expression Laboratory at MSK. "This new discovery shows that we may be able to harness the power of genome editing to give these 'living therapies' a built-in boost. We are eager to continue exploring how genome-editing technology could give us the next generation of CAR T cell therapy."

Some of the first clinical trials using CRISPR technology are currently in the planning stages. Dr. Sadelain and his team aim to eventually explore the safety and efficacy of these CRISPR-built CAR T cells in a trial. Currently, CAR T cells are usually made using a retroviral or lentiviral technology to deliver the CAR gene into the T cells. This delivery method results in the CAR gene being inserted at random into the genome of the recipient cells, which can result in unwanted genetic side effects.

###

CAR T cell therapies, which were first developed at MSK, are transforming the treatment of certain cancers, including several blood cancers. This type of targeted immunotherapy aims to boost the immune system by giving immune cells the information they need to better recognize tumor cells as foreign and attack them. Dr. Sadelain and colleagues have led the efforts to develop these genetically engineered immune cells to fight cancer. Read more about immunotherapy at MSK here: https://www.mskcc.org/immunotherapy-msk.

About Memorial Sloan Kettering

We are the world's oldest and largest private cancer center, home to more than 14,000 physicians, scientists, nurses, and staff united by a relentless dedication to conquering cancer. As an independent institution, we combine 130 years of research and clinical leadership with the freedom to provide highly individualized, exceptional care to each patient. And our always-evolving educational programs continue to train new leaders in the field, here and around the world. For more information, go to http://www.mskcc.org.

Media Contact

Caitlin Hool
[email protected]
@sloan_kettering

http://www.mskcc.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.