• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Although tiny, peatland microorganisms have a big impact on climate

by
July 17, 2024
in Chemistry
Reading Time: 3 mins read
0
Although Tiny, Peatland Microorganisms Have a Big Impact on Climate
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Polyphenols are a diverse group of organic compounds produced by plants. These compounds are often toxic to microorganisms. In peatlands, scientists thought that microorganisms avoided this toxicity by degrading polyphenols using an enzyme that requires oxygen. However, when there is little or no oxygen, like after flooding due to climate induced thawing, the enzyme is inactive, and polyphenols accumulate. This inhibits microbes’ carbon cycling. In this study, scientists mined data for thousands of microbial genomes recovered from Stordalen Mire, an Arctic peatland in Sweden. They discovered that these microorganisms used alternative polyphenol-active enzymes, with and without oxygen. The study underscores the significance of polyphenols in peatland carbon dynamics. It also suggests that the carbon stored in these ecosystems is at greater risk to be released into the atmosphere by climate change than previously thought.

Although Tiny, Peatland Microorganisms Have a Big Impact on Climate

Credit: Image courtesy of Benjamin Bolduc, The Ohio State University.

The Science

Polyphenols are a diverse group of organic compounds produced by plants. These compounds are often toxic to microorganisms. In peatlands, scientists thought that microorganisms avoided this toxicity by degrading polyphenols using an enzyme that requires oxygen. However, when there is little or no oxygen, like after flooding due to climate induced thawing, the enzyme is inactive, and polyphenols accumulate. This inhibits microbes’ carbon cycling. In this study, scientists mined data for thousands of microbial genomes recovered from Stordalen Mire, an Arctic peatland in Sweden. They discovered that these microorganisms used alternative polyphenol-active enzymes, with and without oxygen. The study underscores the significance of polyphenols in peatland carbon dynamics. It also suggests that the carbon stored in these ecosystems is at greater risk to be released into the atmosphere by climate change than previously thought.

The Impact

Arctic peatlands store vast amounts of carbon. As global temperatures increase and environments change in response, the stability of the carbon stored in these habitats has emerged as a pressing concern. Researchers delved deep into the soil microbiome, scrutinizing the functions of thousands of microorganisms in an Arctic peatland ecosystem. Contrary to previous assumptions, the study revealed that many microorganisms metabolize polyphenols. Scientists had believed that this complex class of carbon compounds was inert and an important part of carbon storage. Armed with this new insight, scientists are better equipped to forecast the impacts of climate change on Arctic ecosystems and devise targeted strategies for mitigating these effects.

Summary

Peatlands have long intrigued scientists as reservoirs of terrestrial carbon, yet the role of microorganisms in carbon cycling has remained enigmatic. Contrary to past assumptions, this new research challenges the notion that peatland microorganisms exclusively degrade polyphenols under oxygenated conditions using phenol oxidase. Drawing from insights derived from other oxygen-limited environments like the human gut and rumen, where alternative enzymes and pathways metabolize polyphenols, the research team developed a novel computational tool to rapidly profile polyphenol metabolisms in microbial genomes. This software, applied to thousands of microbial genomes sampled from an Arctic peatland, unveiled a surprising diversity of polyphenol-transforming biochemical pathways. Remarkably, certain microorganisms encoded a profusion of these genes, signifying a polyphenol degradation prowess. Furthermore, the findings highlight the adaptability of microbial gene expression to shifts in soil redox conditions across the landscape.

By uncovering this hidden biochemistry, this research pioneers a new understanding of carbon cycling in these climate critical ecosystems. These insights not only expand knowledge of microbial metabolism but also underscore the intricate interplay between microorganisms and carbon dynamics in the face of climate change.

 

Funding

This material was based on work supported by the Department of Energy (DOE) Office of Science, Biological and Environmental Research Program, as well as the National Sciences Foundation Biological Integration Institute. A portion of this research was performed under the DOE Facilities Integrating Collaborations for User Science program and used resources at the Joint Genome Institute and the Environmental Molecular Sciences Laboratory, both DOE Office of Science user facilities.



Journal

Nature Microbiology

DOI

10.1038/s41564-024-01691-0

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Microbial polyphenol metabolism is part of the thawing permafrost carbon cycle

Article Publication Date

28-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025
Wirth Named Fellow of the American Physical Society

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

Energy Savings at Home Are Driven by Attitudes, Not Income

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1209 shares
    Share 483 Tweet 302
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    97 shares
    Share 39 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    87 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Behavior Patterns in Chinese Women Aged 40+

Measuring AI: The Power of Algorithmic Generalization

Innovations in Hereditary Angioedema Treatment: Present & Future

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.