• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

High indoxyl sulfate levels caused by acute kidney injury damages lungs

Bioengineer by Bioengineer
February 22, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Hideyuki Saito

Acute kidney injury (AKI) is sudden kidney failure or damage lasting from a few hours to several days. During this time, the kidney's ability to maintain a proper balance of bodily fluids is compromised and causes a buildup of waste products in the blood. There are several causes of AKI including decreased blood flow to the kidneys, direct kidney damage, and blockage of the urinary tract. The mortality rate for AKI is relatively high and is often exasperated by complications with the respiratory system. Unfortunately, the relationship between lung injury and AKI is not completely understood.

To find a connection between acute lung injury (ALI) and AKI, researchers from Kumamoto University in Japan developed a bilateral nephrectomy (BNx)-induced AKI rat model. Based on previous research, they focused mainly on indoxyl sulfate (IS), a chemical that contributes to kidney disease that is normally excreted in urine but remains in the circulatory system of those with kidney disease. The experiments included three subject types, sham-operated (sham), BNx, and BNx rats that were given the orally administered intestinal sorbent AST-120 (BNx+AST-120), which decreases uremic toxins like IS.

The researchers had two goals, to see if IS affected aquaporin 5 (AQP-5), a protein with the main function of transporting water across lung cell membranes, and to determine if IS plays a role in the development of ALI during instances of kidney injury or disease. Their results showed that serum IS levels and IS organ accumulation (lungs, liver, heart, intestine) 48 hours after surgery was significantly higher for BNx rats than both the sham and BNx+AST-120 rats. Histological analyses of lung tissues revealed a significant reduction of interstitial tissue thickening in the BNx+AST-120 rats compared to the BNx rats. Furthermore, Western blot and immunohistochemical analyses helped confirm that the BNx+AST-120 rats had AQP-5 levels similar to the sham rat.

"Our work confirms that acute kidney damage results in an accumulation of IS in lung tissue and may cause acute lung injury through renopulmonary crosstalk," said lead researcher Dr. Hideyuki Saito. "In other words, IS accumulation acts to dysregulate the expression of salt and water channels in the lungs leading to thickened tissue and lung damage. Fortunately, we also found that oral treatment with the intestinal sorbent AST-120 had the positive effect of returning interstitial lung tissue to a relatively normal thickness by decreasing production and pulmonary accumulation of IS."

One limitation of this study was the low number of test subjects; the experimental procedure only used three rats for each of the three surgical variables. However, future studies are planned to clarify mechanisms involved in the dysregulation of AQP-5 by IS, which may further support the results of this study.

The findings of this research shine a new light on the role that AKI plays in the development of ALI, i.e., renopulmonary crosstalk, and may provide insight into new therapeutic approaches. The full research article may be found on the International Journal of Molecular Sciences website.

###

[Citation]

N. Yabuuchi, M. Sagata, C. Saigo, G. Yoneda, Y. Yamamoto, Y. Nomura, K. Nishi, R. Fujino, H. Jono, and H. Saito, "Indoxyl sulfate as a mediator involved in dysregulation of pulmonary aquaporin-5 in acute lung injury caused by acute kidney injury," International Journal of Molecular Sciences, vol. 18, p. 11, Dec. 2016. DOI: 10.3390/ijms18010011

Media Contact

J. Sanderson
[email protected]

http://ewww.kumamoto-u.ac.jp/en/news/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.