• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Unravelling the atomic and nuclear structure of the heaviest elements

Bioengineer by Bioengineer
February 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Little is known about the heaviest, radioactive elements in Mendeleev's table. But an extremely sensitive technique involving laser light and gas jets makes it possible for the very first time to gain insight into their atomic and nuclear structure. An international team led by scientists from the Institute for Nuclear and Radiation Physics at KU Leuven (University of Leuven, Belgium) report these findings in Nature Communications.

In 2016 scientists added four more elements to Mendeleev's periodic table. These heavy elements are not found on Earth and can only be generated using powerful particle accelerators. "The elements are usually generated in minuscule quantities, sometimes just a couple of atoms per year. These atoms are also radioactive, so their decay is quick: sometimes they only exist for a fraction of a second. That is why scientific knowledge of these elements is very limited," say nuclear physicists Mark Huyse and Piet Van Duppen from the KU Leuven Institute for Nuclear and Radiation Physics.

The KU Leuven researchers are now hoping to change that through a new use of the laser ionization technique. "We produced actinium (Ac), the name-giving element of the heavy actinides, in a series of experiments using the particle accelerator at Louvain-la-Neuve. The quickly decaying atoms of this element were captured in a gas chamber filled with argon, sucked into a supersonic jet, and spotlighted with laser beams. By doing so we bring the outer electron in a different orbit. A second laser beam then shoots the electron away. This ionizes the atom, meaning that it becomes positively charged and is now easy to manipulate and detect. The colour of the laser light is like a fingerprint of the atomic structure of the element and the structure of its nucleus."

In itself, laser ionization is a well-known technique but its use in a supersonic jet is new and very suitable for the heavy, radioactive elements: "By ionizing the atom we significantly increase the sensitivity of the technique. The production of a few atoms per second is already enough for measurements during the experiments. This technology increases the sensitivity, accuracy, and speed of the laser ionization by at least ten times. This marks an entirely new era for research on the heaviest elements and makes it possible to test and correct the theoretical models in nuclear physics. Our method will be used in the new particle accelerator of GANIL, which is currently under construction in France."

###

This study is a collaboration between KU Leuven, CRC Louvain-la-Neuve, and research teams from France, Germany, the United Kingdom, and Finland. Additional material, including images, is available on the website of the Institute for Nuclear and Radiation Physics.

Media Contact

Piet Van Duppen
[email protected]
32-163-27263

Mark Huyse
[email protected]
32-16-32-24-36

@LeuvenU
http://www.kuleuven.be/english/news

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.