• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study identifies highly soluble molecules with superior antioxidant benefits for cells

by
July 2, 2024
in Chemistry
Reading Time: 3 mins read
0
Study Identifies Highly Soluble Molecules with Superior Antioxidant Benefits for Cells
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Oxygen is essential for life on Earth, but it also gives rise to free radicals, unstable molecules that can damage cells. Antioxidants are chemical compounds that protect cells by neutralizing free radicals. The quintessential antioxidant is ubiquinone, synthesized within cells. However, this molecule is insoluble in water. José Villalaín, a professor and researcher at Miguel Hernández University of Elche (UMH), is investigating other molecules with similar antioxidant potential but greater solubility and effectiveness.

Study Identifies Highly Soluble Molecules with Superior Antioxidant Benefits for Cells

Credit: Villalaín, J. (2024).

Oxygen is essential for life on Earth, but it also gives rise to free radicals, unstable molecules that can damage cells. Antioxidants are chemical compounds that protect cells by neutralizing free radicals. The quintessential antioxidant is ubiquinone, synthesized within cells. However, this molecule is insoluble in water. José Villalaín, a professor and researcher at Miguel Hernández University of Elche (UMH), is investigating other molecules with similar antioxidant potential but greater solubility and effectiveness.

Initial findings from the study suggest that the molecules under investigation could perform a more comprehensive antioxidant role compared to ubiquinone, which is localized only in certain parts of the membrane. The study focuses on a biomembrane similar to that of mitochondria -a part of all animal cells- and examines the behavior of the molecules idebenone (IDE) and mitoquinone (MTQ).

Ubiquinone is water-insoluble and does not move between membranes without protein transporters. The molecules used in the study are more soluble, can transfer and accumulate, are better absorbed, and can move freely between membranes.

Professor Villalaín explains that free radicals affect the body indirectly. The organism cannot function if cells do not work properly, and free radicals increase that risk. However, these harmful compounds are constantly being produced, and cells have mechanisms to control their formation. Antioxidants help maintain free radicals at a minimum level. Controlling the formation of these damaging compounds can help prevent, in certain cases, some degenerative diseases.

Professor Villalaín, who works at the Institute of Research, Development, and Innovation in Health Biotechnology (IDiBE) at UMH, adds that locating the molecules (IDE and MTQ) in different zones and at varying depths of the biological membrane helps reduce free radical production. He emphasizes that the goal is not to replace ubiquinone but to complement it with other antioxidants that function at different membrane levels.

The study was conducted using molecular dynamics, a “virtual simulation” process requiring significant computing power, necessitating a cluster of computers for the experiment. These simulations determined the location and interaction of the studied molecules, both in their oxidized and reduced forms, in a membrane similar to that of mitochondria. For such research, UMH utilizes a scientific computing cluster, a network of high-speed interconnected computers managed by the Innovation and Technological Planning Service.

The study has been published in the journal Free Radical Biology and Medicine and received partial funding from the Research Program for Aging of the International Center for Research on Aging of the Valencian Community, ICAR, 2023 Call.



Journal

Free Radical Biology and Medicine

DOI

10.1016/j.freeradbiomed.2024.06.017

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10

Article Publication Date

20-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.