• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Evolution history dominantly regulates fine root lifespan in tree species across the world

by
July 1, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fine roots (≤2 mm in diameter), the main conduit for resource uptake in the plant-soil continuum, are one of the most metabolically active organs of trees. Due to the difficulty of directly observing root dynamics, quantifying fine root lifespan can be challenging. Many factors may concurrently regulate fine root lifespan, but the relative importance of these controlling factors is not fully understood.

PLANT PHYLOGENY INFLUENCES ON ROOT LIFESPAN

Credit: Xingzhao H, et al

Fine roots (≤2 mm in diameter), the main conduit for resource uptake in the plant-soil continuum, are one of the most metabolically active organs of trees. Due to the difficulty of directly observing root dynamics, quantifying fine root lifespan can be challenging. Many factors may concurrently regulate fine root lifespan, but the relative importance of these controlling factors is not fully understood.

In a study published in the journal Forest Ecosystems, a team of researchers from China and Togo analyzed a global dataset they compiled on fine root lifespan and found that global patterns of forest fine root lifespan are shaped by phylogeny, root traits and environmental factors.

“Understanding the drivers of variations in fine root lifespan is key to informing nutrient cycling and productivity in terrestrial ecosystems,” explains the study’s lead author associate professor Xingzhao Huang from the Provincial Key Laboratory of Forest Resources and Silviculture at Anhui Agricultural University. “Fine root lifespan showed a clear phylogenetic signal, with gymnosperms having a longer fine root lifespan than angiosperms.”

Notably, fine root lifespan was longer for evergreens than deciduous trees, while ectomycorrhizal plants had an extended fine root lifespan compared with arbuscular mycorrhizal plants. Among different climatic zones, fine root lifespan was the longest in the boreal zone, but did not vary between temperate and tropical zones. Furthermore, fine root lifespan increased with soil depth and root order.

“Gymnosperms had a longer fine root lifespan than angiosperms, suggesting that evolutionary history is a key factor in constraining the global distribution of fine root lifespan,” adds Huang.

This study compiled a large database and investigated the effects of numerous biotic and abiotic factors on fine root lifespan for global forest ecosystems. The findings highlight the dominant role of plant evolutionary history in regulating fine root lifespan, which has rarely been explored in previous studies.

###

Contact the author: Zijian Guo, School of Ecology and Nature Conservation, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, China, mailto:[email protected]

The publisher KeAi was established by Elsevier and China Science Publishing & Media Ltd to unfold quality research globally. In 2013, our focus shifted to open access publishing. We now proudly publish more than 100 world-class, open access, English language journals, spanning all scientific disciplines. Many of these are titles we publish in partnership with prestigious societies and academic institutions, such as the National Natural Science Foundation of China (NSFC).



Journal

Forest Ecosystems

DOI

10.1016/j.fecs.2024.100211

Method of Research

Meta-analysis

Subject of Research

Not applicable

Article Title

Evolution history dominantly regulates fine root lifespan in tree species across the world

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Quality of Canned Whelk Under Varying Sterilization

August 14, 2025
blank

River Otters Thrive Despite Feces and Parasites During Feeding — Benefiting Ecosystems

August 14, 2025

Returned from the Edge of Extinction

August 14, 2025

ASU Scientists Discover New Fossils and Identify a New Ancient Human Ancestor Species

August 14, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Leading ALS Organizations Unveil ‘Champion Insights’ to Explore Elevated ALS Risk Among Athletes and Military Personnel

Seafloor Fiber Reveals Fjord Calving Dynamics

Heritable Factor Links BMI, Fat, Waist in Kids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.